Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | : | _ | (290 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | : | _ | (38 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (6 entries) | |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (120 entries) | |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (24 entries) | |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (19 entries) | |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (6 entries) | |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (5 entries) | |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (72 entries) |
Global Index
A
adjoint [definition, in Matrix]adjoint_compat [lemma, in Matrix]
adjoint_involutive [lemma, in Matrix]
app [constructor, in SQIMP]
B
bell [definition, in Multiqubit]bell_com [definition, in SQIMP]
bound [definition, in Real]
bound_sqrt2 [lemma, in Real]
BtoN [definition, in SQIMP]
C
C [definition, in Complex]Cconj [definition, in Complex]
Cconj_involutive [lemma, in Complex]
Cconj_mult_distr [lemma, in Complex]
Cconj_opp [lemma, in Complex]
Cconj_plus_distr [lemma, in Complex]
Cconj_R [lemma, in Complex]
Cconj_rad2 [lemma, in Complex]
Cconj_0 [lemma, in Complex]
Cdiv [definition, in Complex]
Ci [definition, in Complex]
Cinv [definition, in Complex]
Cinv_l [lemma, in Complex]
Cinv_r [lemma, in Complex]
Cminus [definition, in Complex]
Cmult [definition, in Complex]
Cmult_assoc [lemma, in Complex]
Cmult_comm [lemma, in Complex]
Cmult_plus_distr_l [lemma, in Complex]
Cmult_plus_distr_r [lemma, in Complex]
Cmult_0_l [lemma, in Complex]
Cmult_0_r [lemma, in Complex]
Cmult_1_l [lemma, in Complex]
Cmult_1_r [lemma, in Complex]
Cnorm [definition, in Complex]
Cnorm2 [definition, in Complex]
CNOT [definition, in Multiqubit]
CNOTp1 [lemma, in Multiqubit]
CNOT' [definition, in SQIMP]
CNOT00 [lemma, in Multiqubit]
CNOT01 [lemma, in Multiqubit]
CNOT10 [lemma, in Multiqubit]
CNOT11 [lemma, in Multiqubit]
com [inductive, in SQIMP]
completeness [axiom, in Real]
Complex [library]
com_equiv [definition, in SQIMP]
com_equiv_refl [lemma, in SQIMP]
com_equiv_sym [lemma, in SQIMP]
com_equiv_trans [lemma, in SQIMP]
Conj_mult_norm2 [lemma, in Complex]
Copp [definition, in Complex]
Copp_involutive [lemma, in Complex]
Copp_mult_distr_l [lemma, in Complex]
Copp_mult_distr_r [lemma, in Complex]
Cplus [definition, in Complex]
Cplus_assoc [lemma, in Complex]
Cplus_comm [lemma, in Complex]
Cplus_opp_l [lemma, in Complex]
Cplus_opp_r [lemma, in Complex]
Cplus_0_l [lemma, in Complex]
Cplus_0_r [lemma, in Complex]
Csqrt2_inv [lemma, in Qubit]
Csqrt2_square [lemma, in Complex]
Csqrt_inv [lemma, in Qubit]
Csum [definition, in Complex]
Csum_conj_distr [lemma, in Complex]
Csum_eq [lemma, in Complex]
Csum_mult_l [lemma, in Complex]
Csum_mult_r [lemma, in Complex]
Csum_plus [lemma, in Complex]
Csum_unique [lemma, in Complex]
Csum_0 [lemma, in Complex]
C0 [definition, in Complex]
C1 [definition, in Complex]
C1_neq_C0 [lemma, in Complex]
C_Field_Theory [lemma, in Complex]
c_proj_eq [lemma, in Complex]
D
decode [definition, in SQIMP]dot [definition, in Matrix]
E
encode [definition, in SQIMP]eval [definition, in SQIMP]
eval_bell [lemma, in SQIMP]
eval_cnot [definition, in SQIMP]
ex_lt_sqrt2 [lemma, in Real]
F
field_test1 [definition, in Real]G
Gate [inductive, in SQIMP]G_CNOT [constructor, in SQIMP]
g_eval [definition, in SQIMP]
G_H [constructor, in SQIMP]
G_X [constructor, in SQIMP]
G_Z [constructor, in SQIMP]
H
H [definition, in Qubit]HH01 [lemma, in Multiqubit]
Hplus [lemma, in Qubit]
Htwice [lemma, in Qubit]
H' [definition, in SQIMP]
I
I [definition, in Matrix]inner_product [definition, in Matrix]
INR [definition, in Real]
is_lub [definition, in Real]
is_upper_bound [definition, in Real]
K
kron [definition, in Matrix]kron_adjoint [lemma, in Matrix]
kron_compat [lemma, in Matrix]
L
lt_sqrt2 [definition, in Real]M
Matrix [definition, in Matrix]Matrix [library]
mat_equiv [definition, in Matrix]
mat_equiv_refl [lemma, in Matrix]
mat_equiv_sym [lemma, in Matrix]
mat_equiv_trans [lemma, in Matrix]
mat_equiv_trans2 [lemma, in Matrix]
measure [inductive, in Qubit]
measure' [inductive, in Multiqubit]
measure0 [constructor, in Qubit]
measure0' [constructor, in Multiqubit]
measure00 [constructor, in Multiqubit]
measure01 [constructor, in Multiqubit]
measure0_idem [lemma, in Qubit]
measure1 [constructor, in Qubit]
measure1' [constructor, in Multiqubit]
measure10 [constructor, in Multiqubit]
measure11 [constructor, in Multiqubit]
measure1_idem [lemma, in Qubit]
measure_bell [lemma, in Multiqubit]
measure_minus [lemma, in Qubit]
measure_partial [inductive, in Multiqubit]
measure_plus [lemma, in Qubit]
measure_plus_minus [lemma, in Multiqubit]
measure_p_1_0 [constructor, in Multiqubit]
measure_p_1_1 [constructor, in Multiqubit]
measure_p_2_0 [constructor, in Multiqubit]
measure_p_2_1 [constructor, in Multiqubit]
measure_total [inductive, in Multiqubit]
Mmult [definition, in Matrix]
Mmult_adjoint [lemma, in Matrix]
Mmult_assoc [lemma, in Matrix]
Mmult_compat [lemma, in Matrix]
Mmult_1_l [lemma, in Matrix]
Mmult_1_r [lemma, in Matrix]
Mplus [definition, in Matrix]
Mplus3 [lemma, in Matrix]
Mplus3_first_try [lemma, in Matrix]
Mplus_assoc [lemma, in Matrix]
Mplus_comm [lemma, in Matrix]
Mplus_compat [lemma, in Matrix]
Mplus_0_l [lemma, in Matrix]
Mplus_0_r [lemma, in Matrix]
Mscale [definition, in Matrix]
Mscale_compat [lemma, in Matrix]
Multiqubit [library]
N
NOTC [definition, in SQIMP]O
outer_product [definition, in Matrix]P
pad [definition, in SQIMP]partial_measure_bell [lemma, in Multiqubit]
partial_measure_plus_minus [lemma, in Multiqubit]
pown_sqrt [lemma, in Qubit]
pow2_sqrt [lemma, in Qubit]
pow2_sqrt2 [lemma, in Qubit]
Q
qubit [definition, in Multiqubit]Qubit [abbreviation, in Qubit]
Qubit [library]
Qubits [abbreviation, in Multiqubit]
qubit0 [definition, in Qubit]
qubit1 [definition, in Qubit]
qubit_decomposition [lemma, in Qubit]
q_minus [definition, in Qubit]
q_plus [definition, in Qubit]
R
R [axiom, in Real]Rdiv [definition, in Real]
Real [library]
Rge [definition, in Real]
Rgt [definition, in Real]
ring_test1 [definition, in Real]
ring_test2 [definition, in Real]
Rinv [axiom, in Real]
Rinv_l [axiom, in Real]
Rinv_r [lemma, in Real]
Rle [definition, in Real]
Rlt [axiom, in Real]
Rlt_asym [axiom, in Real]
Rlt_trans [axiom, in Real]
Rlt_0_1 [lemma, in Real]
Rminus [definition, in Real]
Rmult [axiom, in Real]
Rmult_assoc [axiom, in Real]
Rmult_comm [axiom, in Real]
Rmult_lt_compat_l [axiom, in Real]
Rmult_plus_distr_l [axiom, in Real]
Rmult_plus_distr_r [lemma, in Real]
Rmult_0_r [lemma, in Real]
Rmult_1_l [axiom, in Real]
Ropp [axiom, in Real]
Ropp_0 [lemma, in Real]
Rplus [axiom, in Real]
Rplus_assoc [axiom, in Real]
Rplus_cancel_l [lemma, in Real]
Rplus_comm [axiom, in Real]
Rplus_lt_compat_l [axiom, in Real]
Rplus_opp_l [lemma, in Real]
Rplus_opp_r [axiom, in Real]
Rplus_0_l [axiom, in Real]
Rplus_0_r [lemma, in Real]
RtoC [definition, in Complex]
RtoC_neq [lemma, in Complex]
R0 [axiom, in Real]
R0_unique [lemma, in Real]
R1 [axiom, in Real]
R1_neq_R0 [axiom, in Real]
R_Field_Theory [lemma, in Real]
R_Ring_Theory [lemma, in Real]
S
scale0_concrete [lemma, in Matrix]seq [constructor, in SQIMP]
seq_assoc [lemma, in SQIMP]
seq_congruence [lemma, in SQIMP]
shift_right [definition, in Matrix]
shift_unequal [lemma, in Matrix]
skip [constructor, in SQIMP]
SKIP [definition, in SQIMP]
SQIMP [library]
sqrt2 [definition, in Real]
sqrt2_inv [lemma, in Qubit]
sqrt_inv [lemma, in Qubit]
sqrt_neq_0_compat [lemma, in Qubit]
Square [abbreviation, in Matrix]
superdense [definition, in SQIMP]
superdense_correct [lemma, in SQIMP]
T
test_qubits [lemma, in Multiqubit]total_order_T [axiom, in Real]
trace [definition, in Matrix]
trace_compat [lemma, in Matrix]
transpose [definition, in Matrix]
transpose_compat [lemma, in Matrix]
U
Unitary [abbreviation, in Qubit]upper_bound_2_sqrt_2 [lemma, in Real]
V
valid_qubit_function [lemma, in Qubit]Vector [abbreviation, in Matrix]
W
WF_H [lemma, in Qubit]WF_I [lemma, in Qubit]
WF_Qubit [definition, in Qubit]
WF_qubit0 [lemma, in Qubit]
WF_qubit1 [lemma, in Qubit]
WF_Qubit_alt [lemma, in Qubit]
WF_Unitary [definition, in Qubit]
WF_X [lemma, in Qubit]
WF_Z [lemma, in Qubit]
X
X [definition, in Qubit]XH01 [lemma, in Multiqubit]
X' [definition, in SQIMP]
Z
Z [definition, in Qubit]Zero [definition, in Matrix]
Z' [definition, in SQIMP]
:
:com_scope:x_'≡'_x [notation, in SQIMP]:com_scope:x_';'_x [notation, in SQIMP]
:C_scope:x_'*'_x [notation, in Complex]
:C_scope:x_'+'_x [notation, in Complex]
:C_scope:x_'-'_x [notation, in Complex]
:C_scope:x_'/'_x [notation, in Complex]
:C_scope:x_'^*' [notation, in Complex]
:C_scope:'-'_x [notation, in Complex]
:C_scope:'/'_x [notation, in Complex]
:matrix_scope:x_'†' [notation, in Matrix]
:matrix_scope:x_'∘'_x [notation, in Matrix]
:matrix_scope:x_'⊗'_x [notation, in Matrix]
:matrix_scope:x_'⊤' [notation, in Matrix]
:matrix_scope:x_'×'_x [notation, in Matrix]
:matrix_scope:x_'.*'_x [notation, in Matrix]
:matrix_scope:x_'.+'_x [notation, in Matrix]
:matrix_scope:x_'<=?'_x [notation, in Matrix]
:matrix_scope:x_''_x [notation, in Matrix]
:matrix_scope:x_'=?'_x [notation, in Matrix]
:matrix_scope:'⟨'_x_','_x_'⟩' [notation, in Matrix]
:R_scope:x_'*'_x [notation, in Real]
:R_scope:x_'+'_x [notation, in Real]
:R_scope:x_'-'_x [notation, in Real]
:R_scope:x_'/'_x [notation, in Real]
:R_scope:x_'<'_x [notation, in Real]
:R_scope:x_'<='_x [notation, in Real]
:R_scope:x_'>'_x [notation, in Real]
:R_scope:x_'>='_x [notation, in Real]
:R_scope:'√'_x [notation, in Complex]
:R_scope:'-'_x [notation, in Real]
:R_scope:'/'_x [notation, in Real]
::x_'=='_x [notation, in Matrix]
::'∣'_x_'⟩' [notation, in Multiqubit]
::'∣'_x_','_x_','_'..'_','_x_'⟩' [notation, in Multiqubit]
::'∣'_'+'_'⟩' [notation, in Qubit]
::'∣'_'-'_'⟩' [notation, in Qubit]
::'∣'_'0'_'⟩' [notation, in Qubit]
::'∣'_'1'_'⟩' [notation, in Qubit]
Notation Index
:
:com_scope:x_'≡'_x [in SQIMP]:com_scope:x_';'_x [in SQIMP]
:C_scope:x_'*'_x [in Complex]
:C_scope:x_'+'_x [in Complex]
:C_scope:x_'-'_x [in Complex]
:C_scope:x_'/'_x [in Complex]
:C_scope:x_'^*' [in Complex]
:C_scope:'-'_x [in Complex]
:C_scope:'/'_x [in Complex]
:matrix_scope:x_'†' [in Matrix]
:matrix_scope:x_'∘'_x [in Matrix]
:matrix_scope:x_'⊗'_x [in Matrix]
:matrix_scope:x_'⊤' [in Matrix]
:matrix_scope:x_'×'_x [in Matrix]
:matrix_scope:x_'.*'_x [in Matrix]
:matrix_scope:x_'.+'_x [in Matrix]
:matrix_scope:x_'<=?'_x [in Matrix]
:matrix_scope:x_''_x [in Matrix]
:matrix_scope:x_'=?'_x [in Matrix]
:matrix_scope:'⟨'_x_','_x_'⟩' [in Matrix]
:R_scope:x_'*'_x [in Real]
:R_scope:x_'+'_x [in Real]
:R_scope:x_'-'_x [in Real]
:R_scope:x_'/'_x [in Real]
:R_scope:x_'<'_x [in Real]
:R_scope:x_'<='_x [in Real]
:R_scope:x_'>'_x [in Real]
:R_scope:x_'>='_x [in Real]
:R_scope:'√'_x [in Complex]
:R_scope:'-'_x [in Real]
:R_scope:'/'_x [in Real]
::x_'=='_x [in Matrix]
::'∣'_x_'⟩' [in Multiqubit]
::'∣'_x_','_x_','_'..'_','_x_'⟩' [in Multiqubit]
::'∣'_'+'_'⟩' [in Qubit]
::'∣'_'-'_'⟩' [in Qubit]
::'∣'_'0'_'⟩' [in Qubit]
::'∣'_'1'_'⟩' [in Qubit]
Library Index
C
ComplexM
MatrixMultiqubit
Q
QubitR
RealS
SQIMPLemma Index
A
adjoint_compat [in Matrix]adjoint_involutive [in Matrix]
B
bound_sqrt2 [in Real]C
Cconj_involutive [in Complex]Cconj_mult_distr [in Complex]
Cconj_opp [in Complex]
Cconj_plus_distr [in Complex]
Cconj_R [in Complex]
Cconj_rad2 [in Complex]
Cconj_0 [in Complex]
Cinv_l [in Complex]
Cinv_r [in Complex]
Cmult_assoc [in Complex]
Cmult_comm [in Complex]
Cmult_plus_distr_l [in Complex]
Cmult_plus_distr_r [in Complex]
Cmult_0_l [in Complex]
Cmult_0_r [in Complex]
Cmult_1_l [in Complex]
Cmult_1_r [in Complex]
CNOTp1 [in Multiqubit]
CNOT00 [in Multiqubit]
CNOT01 [in Multiqubit]
CNOT10 [in Multiqubit]
CNOT11 [in Multiqubit]
com_equiv_refl [in SQIMP]
com_equiv_sym [in SQIMP]
com_equiv_trans [in SQIMP]
Conj_mult_norm2 [in Complex]
Copp_involutive [in Complex]
Copp_mult_distr_l [in Complex]
Copp_mult_distr_r [in Complex]
Cplus_assoc [in Complex]
Cplus_comm [in Complex]
Cplus_opp_l [in Complex]
Cplus_opp_r [in Complex]
Cplus_0_l [in Complex]
Cplus_0_r [in Complex]
Csqrt2_inv [in Qubit]
Csqrt2_square [in Complex]
Csqrt_inv [in Qubit]
Csum_conj_distr [in Complex]
Csum_eq [in Complex]
Csum_mult_l [in Complex]
Csum_mult_r [in Complex]
Csum_plus [in Complex]
Csum_unique [in Complex]
Csum_0 [in Complex]
C1_neq_C0 [in Complex]
C_Field_Theory [in Complex]
c_proj_eq [in Complex]
E
eval_bell [in SQIMP]ex_lt_sqrt2 [in Real]
H
HH01 [in Multiqubit]Hplus [in Qubit]
Htwice [in Qubit]
K
kron_adjoint [in Matrix]kron_compat [in Matrix]
M
mat_equiv_refl [in Matrix]mat_equiv_sym [in Matrix]
mat_equiv_trans [in Matrix]
mat_equiv_trans2 [in Matrix]
measure0_idem [in Qubit]
measure1_idem [in Qubit]
measure_bell [in Multiqubit]
measure_minus [in Qubit]
measure_plus [in Qubit]
measure_plus_minus [in Multiqubit]
Mmult_adjoint [in Matrix]
Mmult_assoc [in Matrix]
Mmult_compat [in Matrix]
Mmult_1_l [in Matrix]
Mmult_1_r [in Matrix]
Mplus3 [in Matrix]
Mplus3_first_try [in Matrix]
Mplus_assoc [in Matrix]
Mplus_comm [in Matrix]
Mplus_compat [in Matrix]
Mplus_0_l [in Matrix]
Mplus_0_r [in Matrix]
Mscale_compat [in Matrix]
P
partial_measure_bell [in Multiqubit]partial_measure_plus_minus [in Multiqubit]
pown_sqrt [in Qubit]
pow2_sqrt [in Qubit]
pow2_sqrt2 [in Qubit]
Q
qubit_decomposition [in Qubit]R
Rinv_r [in Real]Rlt_0_1 [in Real]
Rmult_plus_distr_r [in Real]
Rmult_0_r [in Real]
Ropp_0 [in Real]
Rplus_cancel_l [in Real]
Rplus_opp_l [in Real]
Rplus_0_r [in Real]
RtoC_neq [in Complex]
R0_unique [in Real]
R_Field_Theory [in Real]
R_Ring_Theory [in Real]
S
scale0_concrete [in Matrix]seq_assoc [in SQIMP]
seq_congruence [in SQIMP]
shift_unequal [in Matrix]
sqrt2_inv [in Qubit]
sqrt_inv [in Qubit]
sqrt_neq_0_compat [in Qubit]
superdense_correct [in SQIMP]
T
test_qubits [in Multiqubit]trace_compat [in Matrix]
transpose_compat [in Matrix]
U
upper_bound_2_sqrt_2 [in Real]V
valid_qubit_function [in Qubit]W
WF_H [in Qubit]WF_I [in Qubit]
WF_qubit0 [in Qubit]
WF_qubit1 [in Qubit]
WF_Qubit_alt [in Qubit]
WF_X [in Qubit]
WF_Z [in Qubit]
X
XH01 [in Multiqubit]Axiom Index
C
completeness [in Real]R
R [in Real]Rinv [in Real]
Rinv_l [in Real]
Rlt [in Real]
Rlt_asym [in Real]
Rlt_trans [in Real]
Rmult [in Real]
Rmult_assoc [in Real]
Rmult_comm [in Real]
Rmult_lt_compat_l [in Real]
Rmult_plus_distr_l [in Real]
Rmult_1_l [in Real]
Ropp [in Real]
Rplus [in Real]
Rplus_assoc [in Real]
Rplus_comm [in Real]
Rplus_lt_compat_l [in Real]
Rplus_opp_r [in Real]
Rplus_0_l [in Real]
R0 [in Real]
R1 [in Real]
R1_neq_R0 [in Real]
T
total_order_T [in Real]Constructor Index
A
app [in SQIMP]G
G_CNOT [in SQIMP]G_H [in SQIMP]
G_X [in SQIMP]
G_Z [in SQIMP]
M
measure0 [in Qubit]measure0' [in Multiqubit]
measure00 [in Multiqubit]
measure01 [in Multiqubit]
measure1 [in Qubit]
measure1' [in Multiqubit]
measure10 [in Multiqubit]
measure11 [in Multiqubit]
measure_p_1_0 [in Multiqubit]
measure_p_1_1 [in Multiqubit]
measure_p_2_0 [in Multiqubit]
measure_p_2_1 [in Multiqubit]
S
seq [in SQIMP]skip [in SQIMP]
Inductive Index
C
com [in SQIMP]G
Gate [in SQIMP]M
measure [in Qubit]measure' [in Multiqubit]
measure_partial [in Multiqubit]
measure_total [in Multiqubit]
Abbreviation Index
Q
Qubit [in Qubit]Qubits [in Multiqubit]
S
Square [in Matrix]U
Unitary [in Qubit]V
Vector [in Matrix]Definition Index
A
adjoint [in Matrix]B
bell [in Multiqubit]bell_com [in SQIMP]
bound [in Real]
BtoN [in SQIMP]
C
C [in Complex]Cconj [in Complex]
Cdiv [in Complex]
Ci [in Complex]
Cinv [in Complex]
Cminus [in Complex]
Cmult [in Complex]
Cnorm [in Complex]
Cnorm2 [in Complex]
CNOT [in Multiqubit]
CNOT' [in SQIMP]
com_equiv [in SQIMP]
Copp [in Complex]
Cplus [in Complex]
Csum [in Complex]
C0 [in Complex]
C1 [in Complex]
D
decode [in SQIMP]dot [in Matrix]
E
encode [in SQIMP]eval [in SQIMP]
eval_cnot [in SQIMP]
F
field_test1 [in Real]G
g_eval [in SQIMP]H
H [in Qubit]H' [in SQIMP]
I
I [in Matrix]inner_product [in Matrix]
INR [in Real]
is_lub [in Real]
is_upper_bound [in Real]
K
kron [in Matrix]L
lt_sqrt2 [in Real]M
Matrix [in Matrix]mat_equiv [in Matrix]
Mmult [in Matrix]
Mplus [in Matrix]
Mscale [in Matrix]
N
NOTC [in SQIMP]O
outer_product [in Matrix]P
pad [in SQIMP]Q
qubit [in Multiqubit]qubit0 [in Qubit]
qubit1 [in Qubit]
q_minus [in Qubit]
q_plus [in Qubit]
R
Rdiv [in Real]Rge [in Real]
Rgt [in Real]
ring_test1 [in Real]
ring_test2 [in Real]
Rle [in Real]
Rminus [in Real]
RtoC [in Complex]
S
shift_right [in Matrix]SKIP [in SQIMP]
sqrt2 [in Real]
superdense [in SQIMP]
T
trace [in Matrix]transpose [in Matrix]
W
WF_Qubit [in Qubit]WF_Unitary [in Qubit]
X
X [in Qubit]X' [in SQIMP]
Z
Z [in Qubit]Zero [in Matrix]
Z' [in SQIMP]
Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | : | _ | (290 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | : | _ | (38 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (6 entries) | |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (120 entries) | |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (24 entries) | |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (19 entries) | |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (6 entries) | |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (5 entries) | |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | (72 entries) |