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ABSTRACT
FORMALLY VERIFIED QUANTUM PROGRAMMING

Robert Rand
Steve Zdancewic

The field of quantum mechanics predates computer science by at least ten years,
the time between the publication of the Schrödinger equation and the Church-Turing
thesis. It took another fifty years for Feynman to recognize that harnessing quantum
mechanics is necessary to efficiently simulate physics and for David Deutsch to propose
the quantum Turing machine. After thirty more years, we are finally getting close to
the first general-purpose quantum computers based upon prototypes by IBM, Intel,
Google and others.

While physicists and engineers have worked on building scalable quantum comput-
ers, theoretical computer scientists have made their own advances. Complexity theo-
rists introduced quantum complexity classes like BQP and QMA; Shor and Grover de-
veloped their famous algorithms for factoring and unstructured search. Programming
languages researchers pursued two main research directions: Small-scale languages
like QPL and the quantum λ-calculi for reasoning about quantum computation and
large-scale languages like Quipper and Q# for industrial-scale quantum software de-
velopment. This thesis aims to unify these two threads while adding a third one:
formal verification.

We argue that quantum programs demand machine-checkable proofs of correct-
ness. We justify this on the basis of the complexity of programs manipulating quan-
tum states, the expense of running quantum programs, and the inapplicability of
traditional debugging techniques to programs whose states cannot be examined. We
further argue that the existing mathematical models of quantum computation make
this an easier task than one could reasonably expect. In light of these observations
we introduce Qwire, a tool for writing verifiable, large scale quantum programs.
Qwire is not merely a language for writing and verifying quantum circuits: it is a

verified circuit description language. This means that the semantics of Qwire circuits
are verified in the Coq proof assistant. We also implement verified abstractions, like
ancilla management and reversible circuit compilation. Finally, we turn Qwire and
Coq’s abilities outwards, towards verifying popular quantum algorithms like quantum
teleportation. We argue that this tool provides a solid foundation for research into
quantum programming languages and formal verification going forward.
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Chapter 1

The Big Picture

1.1 Motivation
In 1936, Alonzo Church wrote a programming language for a machine that didn’t
exist. His lambda calculus (Church, 1936a) influenced many of the programming lan-
guages that would emerge with the advent of the programmable computer in the
1940s. This, of course, wasn’t Church’s goal: He had in his sights Hilbert’s Entschei-
dungsproblem, which asked whether one could write an algorithm to prove arbitrary
statements in first-order logic. Church (1936b) and Turing (1937) both answered this
problem in the negative and, in doing so, proposed “universal” models of computation
that fundamentally ignored the scientific revolution of ten years prior.

While Church and Turing’s models of computation were able to express which
problems were computable in theory, they were woefully ill-equipped to describe which
problems were solvable in practice, even using the language of complexity theory.
Richard Feynman first recognized this in 1982 (Feynman, 1982), pointing out that a
Turing machine was seemingly incapable of efficiently simulating physics, since physics
obeys the mathematically complex laws of quantum mechanics. This shortcoming was
both surprising and disappointing: You would expect that we could simulate basic
physical processes on our so-called universal computers.

David Deutsch (1985) addressed this problem three years later. He proposed a
“Quantum Turing Machine” that could serve as the basis for quantum complexity the-
ory. Complexity theorists ran with this idea, introducing the classes BQP (Bounded-
Error Quantum Polynomial-Time) (Bernstein and Vazirani, 1997) and QMA (Quan-
tum Merlin-Arthur) (Watrous, 2000), and studying their relationships to the classical
and probabilistic complexity classes. These studies led to breakthrough quantum al-
gorithms, including Shor’s algorithm (1994) for computing prime factors and discrete
logarithms, and Grover’s algorithm (1996) for unstructured search. While Grover’s
algorithm led only to a quadratic speedup, Shor’s algorithm factored numbers in
polynomial time, suggesting that BQP (the quantum analogue of polynomial time,
or P) is strictly larger than P. This suggestion was reinforced by subsequent results,

1



such as Raz and Avishay’s (2018) proof of an oracle separation between BQP and the
polynomial hierarchy. By now, Quantum Complexity Theory is featured in standard
complexity theory textbooks (for example, Arora and Barak (2009)) and even books
aimed at a popular audience (Aaronson, 2013).

While the complexity theorists and algorithms designers have done an impres-
sive job of telling future quantum programmers what to program, programming lan-
guages researchers have lagged behind in telling them how to program. This presents
a dilemma. When general-purpose quantum computers see the light of day (soon,
judging by recent efforts at technology giants Google1, IBM2, Intel3, Microsoft4 and
Alibaba5, as well as the start-up Rigetti Computing6), people will program them.
And if they are forced to invent ad-hoc programming languages to address the chal-
lenges of the moment, we risk introducing design flaws that will plague generations
of quantum programmers.

Reassuringly, programming languages research has a head start on actual quan-
tum computers. Several important paradigms have gained traction within the quan-
tum programming languages community, including the QRAM model (Knill, 1996),
in which a quantum computer is used as a sort of oracle by a connected classical
computer, and Selinger’s (2004a) refinement called quantum data, classical control,
in which data may be quantum, but a program’s control flow is always classical. A
special case of Selinger’s approach is the quantum circuit model, in which a classical
computer constructs quantum circuits and sends them to a quantum computer for
execution.

The twenty-two years since Knill wrote his “Conventions for Quantum Pseu-
docode” (Knill, 1996) have seen the proliferation of quantum programming languages,
which we can loosely classify into two groups:

1. Academic programming languages for reasoning about quantum programs

2. High level languages for implementing complex quantum programs on future
quantum devices

In the first category we have languages like QPL (Selinger, 2004a), λq (van Ton-
der, 2004), and the Quantum Lambda Calculus (Selinger and Valiron, 2009). QPL

1https://www.technologyreview.com/s/604242/googles-new-chip-is-a-stepping-
stone-to-quantum-computing-supremacy

2https://www.technologyreview.com/s/607887/ibm-nudges-ahead-in-the-race-for-
quantum-supremacy

3https://www.technologyreview.com/s/603165/intel-bets-it-can-turn-everyday-
silicon-into-quantum-computings-wonder-material

4http://www.nature.com/news/inside-microsoft-s-quest-for-a-topological-quantum-
computer-1.20774

5https://medium.com/syncedreview/alibaba-launches-11-qubit-quantum-computing-
cloud-service-ad7f8e02cc8

6https://www.forbes.com/sites/alexknapp/2018/09/07/rigetti-computing-takes-
small-step-toward-cloud-services-in-big-leap-for-quantum-computing
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was one of the first proposed quantum programming languages, with a denotational
semantics given in terms of string diagrams and density matrices. This language was
used as a model language in a number of subsequent works, such as Kakutani’s (2009)
Hoare-like logic QHL and D’Hondt and Panangaden’s (2006) Quantum Weakest Pre-
conditions. Van Tonder’s λq and Selinger and Valiron’s Quantum Lambda Calculus
are both adaptations of Church’s lambda calculus to a quantum setting. λq focuses
on expressivity and sketches a proof of equivalence to Yao’s (1993) quantum circuit
model and thereby to the quantum Turing machine. Selinger and Valiron’s calcu-
lus, by contrast, focuses on the language’s linear type system, which enforces the
no-cloning theorem of quantum mechanics by guaranteeing that each qubit is used
exactly once. None of these languages are designed for practical quantum computing,
however.

By contrast, quantum circuit languages like QCL (Ömer, 2000, 2003), Quip-
per (Green et al., 2013a,b), Liquid (Wecker and Svore, 2014), and Q# (Svore et al.,
2018) are designed for efficient, general-purpose quantum computing. QCL is a C-like
language with support for both classical and quantum computing, where Quipper
and Liquid are embedded in Haskell and F#, respectively, and are capable of us-
ing these languages’ features and libraries to construct complex families of quantum
circuits. Q# (Svore et al., 2018) is a recent standalone successor to Liquid, meant
to reduce reliance on F# and provide a programming environment targeted exclu-
sively at quantum computing. All of these languages provide optimized compilation
to low-level circuits and can simulate quantum computation. Unfortunately, they lack
important features of QPL and the Quantum Lambda Calculus, such as denotational
semantics and type systems that guarantee circuits are well-formed.

Given the cost and expressive power of quantum computing, we need a program-
ming language that fits in both of these categories. It should take advantage of existing
programming languages research, which strongly suggests using the quantum circuit
model adopted by Quipper and Liquid, as well as their abstractions and optimizations.
It must ensure that any quantum program sent to the quantum computer represents
a valid quantum mechanical operation, as guaranteed by the Quantum Lambda Cal-
culus’ linear type system. And finally, it must be provably safe and easy to reason
about, in the style of QPL.

This last requirement is partly born of necessity: Quantum programs are tremen-
dously difficult to understand and implement, almost guaranteeing that they will
have bugs. And traditional approaches to debugging will not help us: We cannot
set breakpoints and look at our qubits without collapsing the quantum state. Even
techniques like unit tests and random testing will be impossible to run on classical
machines and too expensive to run on quantum computers – and failed tests are
unlikely to be informative. But this requirement is also born of opportunity: The
underlying mathematics of quantum computing is well understood, and it is easier
to model mathematically than classical programs with probabilistic operations. This
lowers the cost of formal verification, and it can make the most powerful form of
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program specification into the most convenient as well.

1.2 Thesis Statement
Quantum programming is not only amenable to formal verification:
it demands it.

The overarching goal of this thesis is to write and verify quantum programs to-
gether. Towards that end, we introduce a quantum programming language called
Qwire and embed it inside the Coq proof assistant. We give it a linear type system
to ensure that it obeys the laws of quantum mechanics and a denotational seman-
tics to prove that programs behave as desired. We also formalize the metatheory of
Qwire to ensure that the language itself is well-behaved and only supports physically
realizable computation. We use Qwire’s rich type theory and semantic guarantees
to implement features that could not be safely implemented in other languages, from
circuit families to assertive terminations. And, naturally, we use Qwire to verify
existing algorithms from the quantum computing literature.

1.3 Outline
We begin by introducing the basics of quantum computing (Chapter 2). We then take
a look at the history of quantum programming languages, from van Tonder’s (2003)
quantum lambda calculus to powerful modern languages like Quipper (Green et al.,
2013a) and Q# (Svore et al., 2018). That brings us to the core of the thesis, the
quantum circuit language Qwire.
Qwire is an embedded circuit generation language for quantum computing. In

Chapter 4, we give Qwire a denotational semantics in terms of density matrices,
a linear type system that guarantees circuits are well formed, and a dynamic lifting
operation for communication between a classical and a quantum computer.

We embed Qwire inside the Coq proof assistant (Chapter 5), tying its variables
to those of Coq’s programming language Gallina, and implementing a typechecking
algorithm as a Coq tactic. We also provide a direct translation to Qwire’s semantics
in terms of density matrices, allowing us to prove properties of generated circuits.
These density matrices rely on our own libraries for linear algebra and quantum
information theory, together with Coquelicot’s (Boldo et al., 2015) complex num-
ber library. We explore Qwire’s metatheory in Chapter 6, showing that well-typed
circuits correspond to quantum-mechanically sound functions on quantum states. In
chapter Chapter 7, we use the resulting semantics to prove the properties of a number
of quantum programs, including quantum teleportation, Deutsch’s algorithm (1985),
and a variety of coin flipping protocols.

While these chapters assume familiarity with the Coq proof assistant, we hope
that they will be accessible to most readers with some knowledge of functional pro-

4



gramming and formal verification. For the reader who would like to understand the
Coq programming language better, we recommend our online tutorial (Rand and
de Amorim, 2016) or the more comprehensive “Software Foundations,” which also
delves deeply into programming languages and type theory, both of which will aid
the reader in digesting this work.

With Qwire in hand, we can begin to explore a type-safe approach to high-level
quantum programming (Chapter 8, based on Rand et al. (2018a)). We begin by imple-
menting some of the core features of Green et al.’s Quipper language using dependent
types. Quipper makes heavy use of ancillas, temporary qubits that are initialized in
some state and discarded in the same state, at least according to the assertions that
accompany the discard operation. Unfortunately, Quipper has no way of ensuring that
these assertions are true. Worse, the compiler relies upon these assertions, so when an
assertion is false, the compiled program is likely to misbehave. We include assertions
in the Coq implementation of Qwire and require the programmer to prove them
correct before the program will compile. We also provide an assertion-using compiler
from boolean expressions to Qwire circuits, and we prove that the generated circuits
compute the same functions as the provided expressions.

All of this work requires a significant amount of reasoning, from proving that cir-
cuits are well typed to showing that they compute the desired function. As we built
Qwire, we noticed which tasks demanded a lot of our own time and attempted to
automate them, for our benefit and that of future users. Chapter 9 discusses the vari-
ous forms of automation present in Qwire, from the monoidal solver and disjointness
checker used by our linear typechecker to the range of tactics used in proving matrix
equalities.

Given that most of this dissertation discusses the ideas that underlie Qwire, in
Chapter 10 we pause the high-level exposition and delve into the Coq development
itself. There we discuss the assumptions that we use in Qwire and attempt to justify
them. We also include every proof and assumption in this thesis in Appendix C, which
we urge the reader to consult, especially if an English-language description proves
ambiguous. We also encourage the reader to step through the Coq development itself,
available at https://github.com/inQWIRE/QWIRE.

Some of this work appears in two prior papers by Paykin, Rand, and Zdancewic:
Paykin et al. (2017) and Rand et al. (2017). The first paper, which introduces the
Qwire language and its type system and denotational semantics, forms the basis
for Chapter 4. The second paper contains early details of Qwire’s implementation,
along with proofs of some basic circuit equalities. Many of the more interestingQwire
proofs, particularly those about its metatheory, have yet to be published.

We developed Qwire together with Jennifer Paykin, Steve Zdancewic, and Dong-
Ho Lee at the University of Pennsylvania. Though every collaborator was involved in
multiple aspects of Qwire’s development, we can briefly describe the focuses of each
author. This author’s main contributions were towards the semantics of Qwire, its
implementation, and its applications towards formal verification, as explored in this
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thesis. Paykin designed the language itself and its linear type system, as part of a
line of investigation into linear types, including the linear/producer/consumer model
of classical linear logic (Paykin and Zdancewic, 2016), the linearity monad (Paykin
and Zdancewic, 2017), and her dissertation (Paykin, 2018). Zdancewic, our advisor,
helped flesh out most of the ideas underlying Qwire, primarily when they consisted of
sketches on whiteboards. Finally, Lee contributed to the study of reversible computing
in Qwire (Rand et al., 2018a), providing the quantum adder discussed in Chapter 8,
as well as a compiler from Qwire to lower level “quantum assembly” languages that
we discuss in Chapter 11. That chapter also discusses future directions for Qwire,
from verified optimizations to quantum error correction.

6



Chapter 2

An Introduction to Quantum
Computing

In this chapter, we introduce the basics of quantum computation, starting with sim-
ple qubits and proceeding to concepts like superposition, entanglement, and unitary
transformations. We only assume knowledge of basic linear algebra and try to elide
any concepts not directly relevant to this dissertation, particularly those related to the
physics of quantum computation. To assist the unfamiliar reader, we have included
a number of exercises, which should help them internalize ideas as we present them.
Solutions to these exercises are provided in Appendix A.

2.1 Qubits
Qubits, a pun on the ancient unit of measure, “cubit,” are the quantum analogue
of bits. While qubits can take on a variety of configurations, called states, the two
simplest correspond to the binary 0 and 1 and are written ∣0⟩ and ∣1⟩. We call these
the basis states. They may represent different amounts of charge on a wire, or base
particles rotating clockwise versus counterclockwise—as in classical computing, the
physical implementation of qubits does not concern us.

Conveniently, when describing operations on qubits, we can describe their behavior
on basis states and then lift this behavior to more complicated quantum states. One
common “classical” operation on qubits is Wolfgang Pauli’s X (or NOT ) operator,
which behaves like classical negation:

X ∣0⟩ = ∣1⟩
X ∣1⟩ = ∣0⟩

We concatenate qubits using the tensor operator ⊗. For instance, a ∣1⟩ qubit next
to a ∣0⟩ qubit can be written as ∣1⟩ ⊗ ∣0⟩, or ∣10⟩ for short. Note that these qubits
are ordered: There is a first qubit (the ∣1⟩) and a second qubit (the ∣0⟩). We can now
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define the controlled-not (or CNOT ) operator on two qubit states:

CNOT ∣00⟩ = ∣00⟩
CNOT ∣01⟩ = ∣01⟩
CNOT ∣10⟩ = ∣11⟩
CNOT ∣11⟩ = ∣10⟩

When the first qubit is ∣1⟩, the second qubit is negated; otherwise, both qubits are
unchanged. The meaning of “controlled-not” should therefore be apparent: The first
qubit controls whether the second is negated or not. This notion of control can be
generalized as follows: For any operator f on k qubits, a “controlled” f is an operator
on k+1 qubits that applies f if the first qubit is ∣1⟩ and otherwise applies the identity
function. Note that if we iterate the “control” operation, the function will be applied
only if all of the controlling qubits (or “controls”) are ∣1⟩. The controls themselves are
never altered by this operation.

Superposition We now introduce our first “quantum” operation, the Hadamard
H, on one-qubit quantum states:

H ∣0⟩ = 1√
2
∣0⟩ + 1√

2
∣1⟩

H ∣1⟩ = 1√
2
∣0⟩ + − 1√

2
∣1⟩

The scaling factors to the left of ∣0⟩ and ∣1⟩ are complex numbers called amplitudes,
and the expression α ∣0⟩ + β ∣1⟩ represents a superposition, a weighted combination of
∣0⟩ and ∣1⟩. This has no analogue in classical physics, but for our purposes “a weighted
combination” will suffice. The + symbol here behaves like addition: It is commutative
and associative and obeys distributive laws, with both scaling and tensor being a
form of multiplication. Additionally, ∣ψ⟩ and − ∣ψ⟩ cancel each other out, as we will
see in the following example.

Applying an operator to a qubit in a superposition of ∣0⟩ and ∣1⟩ is the same as
applying it to each of the basis qubits, as in the following example:
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H ( 1√
2
∣0⟩ + 1√

2
∣1⟩) = 1√

2
H ∣0⟩ + 1√

2
H ∣1⟩

= 1√
2
( 1√

2
∣0⟩ + 1√

2
∣1⟩) + 1√

2
( 1√

2
∣0⟩ − 1√

2
∣1⟩)

= 1

2
∣0⟩ + 1

2
∣1⟩ + 1

2
∣0⟩ − 1

2
∣1⟩

= 1

2
∣0⟩ + 1

2
∣0⟩

= ∣0⟩

We see that the Hadamard operator can take a non-basis state to a basis state
(this will be true of all our operators).

Exercise 1. Show that H is its own inverse.

Entanglement Things become more interesting once we combine H and CNOT
operators.

Consider a CNOT applied to two qubits: 1√
2
∣0⟩ + 1√

2
∣1⟩ and ∣0⟩:

CNOT [( 1√
2
∣0⟩ + 1√

2
∣1⟩)⊗ ∣0⟩] = CNOT ( 1√

2
∣00⟩ + 1√

2
∣10⟩)

= 1√
2
(CNOT ∣00⟩) + 1√

2
(CNOT ∣10⟩)

= 1√
2
∣00⟩ + 1√

2
∣11⟩

In this new state, the two qubits are intertwined with one another: It is no longer
possible to express this state as the tensor product of two distinct one-qubit states.
We call this state of affairs entanglement, and it is closely related to the dependence
of two random variables in probability theory.

Measurement To see where probability enters the picture, we have to introduce the
measurement operator, meas , which, unlike X, H and CNOT , can only be expressed
as a function on the whole qubit, not its components:

meas(α ∣0⟩ + β ∣1⟩) =
⎧⎪⎪⎨⎪⎪⎩

∣0⟩ with probability ∣α∣2

∣1⟩ with probability ∣β∣2

The modulus of a complex number ∣a + bi∣ is
√
a2 + b2, so whenever the imaginary

component is zero, taking the modulus squared is the same as squaring the number.
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Note that in any single qubit state α ∣0⟩ + β ∣1⟩, we have ∣α∣2 + ∣β∣2 = 1, allowing us to
translate amplitudes into probabilities.

We can see that measuring ∣0⟩ always yields ∣0⟩ and similarly for ∣1⟩, since the
basis state ∣0⟩ is really 1 ∣0⟩+0 ∣1⟩. Measuring H ∣0⟩ or H ∣1⟩ will yield each basis state
with one-half probability, since 1√

2

2 = (− 1√
2
)2 = 1

2 . Measurement is idempotent: Once
we have measured a qubit, it enters the basis state ∣0⟩ or ∣1⟩, so measuring it a second
time has no impact.

We can easily extend this notion of measurement to a multi-qubit system. If we
have the state ∑iαi ∣i⟩ , where ∣i⟩ ranges over the basis states ∣0 . . .0⟩ through ∣1 . . .1⟩,
the probability that measurement returns ∣i⟩ is ∣αi∣2.

What if we want to measure one qubit in a multiple qubit system? Let ∑iαi ∣i⟩
represent the part of the state in which the qubit to be measured is ∣0⟩ and ∑j βj ∣j⟩
represent the part in which the qubit is ∣1⟩. Then the probability p0 of measuring our
qubit as ∣0⟩ is ∑i∣αi∣2, yielding the state

1
√
p0
∑
i

αi ∣i⟩

and similarly for p1 and ∣1⟩. The scaling factor 1√
pi

renormalizes the quantum state
so that the squares of the amplitudes still add up to 1.

For example, suppose we want to measure the first qubit in the state

1

3
∣00⟩ + 2 + i

3
∣01⟩ + 1√

3
∣11⟩ .

We can break this up into 1
3 ∣00⟩ +

2+i
3 ∣01⟩ and

1√
3
∣11⟩. The probability of measuring

the qubit as ∣0⟩ is

∣1
3
∣
2

+ ∣2 + i
3
∣
2

= 1

9
+ 4 + 1

9
= 6

9

and the probability of measuring ∣1⟩ is ∣ 1√
3
∣
2
= 1

3 . Hence when we measure a ∣0⟩ we
obtain the state √

3

2
(1
3
∣00⟩ + 2 + i

3
∣01⟩)

and when we measure a ∣1⟩ we obtain
√

3

1

1√
3
∣11⟩ = ∣11⟩ .

Exercise 2. Now try measuring the second qubit in both of these cases. Verify that
the distribution of results is the same as if we had measured the whole system at
once.
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Exercise 3. Verify that after measuring a qubit, the norm of the quantum state is
still one.

2.2 Example: Quantum Teleportation
We can now introduce a simple quantum protocol known as quantum teleportation.
First, we will introduce one more single-qubit gate:

Z ∣0⟩ = ∣0⟩
Z ∣1⟩ = − ∣1⟩

The setup for quantum teleportation is as follows: Alice and Bob share a Bell
pair, a pair of qubits in the entangled state 1√

2
∣00⟩ + 1√

2
∣11⟩, with Alice holding the

first qubit (a) and Bob the second (b). We will annotate these qubits with a and b
for readability. Though they may be separated by some distance, they are entangled,
and hence we use a single quantum state to represent them. Alice wants to send the
state of some third qubit q in the state α ∣0⟩ + β ∣1⟩ to Bob but she has no quantum
channel, only classical channels that can transmit non-quantum bits.

Hence, we begin with the state

(α ∣0⟩ + β ∣1⟩)
q
( 1√

2
∣0a0b⟩ +

1√
2
∣1a1b⟩)

which we can expand to

1√
2
(α ∣0q0a0b⟩ + α ∣0q1a1b⟩ + β ∣1q0a0b⟩ + β ∣1q1a1b⟩).

Alice first applies a CNOT from q (the controlling qubit) to a, obtaining the
following state:

1√
2
(α ∣0q0a0b⟩ + α ∣0q1a1b⟩ + β ∣1q1a0b⟩ + β ∣1q0a1b⟩)

She then applies a Hadamard to q, obtaining

1√
2
∗ 1√

2
((α ∣0q0a0b⟩ + α ∣1q0a0b⟩) + (α ∣0q1a1b⟩ + α ∣1q1a1b⟩)+

(β ∣0q1a0b⟩ − β ∣1q1a0b⟩) + (β ∣0q0a1b⟩ − β ∣1q0a1b⟩))

Alice’s final step is to measure her qubits and then send the results of the mea-
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surements, which can each be encoded using a classical bit, to Bob. Let’s rearrange
some terms to simplify our calculations:

1

2
( ∣0q0a⟩ (α ∣0⟩ + β ∣1⟩)b + ∣0q1a⟩ (α ∣1⟩ + β ∣0⟩)b+

∣1q0a⟩ (α ∣0⟩ − β ∣1⟩)b + ∣1q1a⟩ (α ∣1⟩ − β ∣0⟩)b)

We can now look at the four possible outcomes of measurement:

Case 1: Alice measured ∣0q0a⟩. This case occurs with probability ∣12α∣
2 + ∣12β∣

2.
Since ∣α∣2 + ∣β∣2 = 1, this is equal to 1

4 , and we rescale by the square root of that
probability, or 1

2 . Hence we arrive at the state:

∣0q0a⟩ (α ∣0⟩ + β ∣1⟩)b

Bob’s qubit is in precisely the state of Alice’s original qubit, and the teleportation
is complete.

Case 2: Alice measured ∣0q1a⟩. This also occurs with probability 1
4 . Bob obtains

the state
∣0q1a⟩ (α ∣1⟩ + β ∣0⟩)b

He applies an X to his qubit and obtains the desired state.

Case 3: Alice measured ∣1q0a⟩. The state of the system is

∣1q0a⟩ (α ∣0⟩ − β ∣1⟩)b

The Z operation will flip the sign of the ∣1⟩.

Case 4: Alice measured ∣1q1a⟩. The state is

∣1q1a⟩ (α ∣1⟩ − β ∣0⟩)b

Bob first applies an X to obtain the state of case 3, and then applies a Z to obtain
Alice’s original quantum state.

2.3 Quantum Circuits
We will often represent sequences of quantum operations using quantum circuits. In
this model, qubits travel along wires, and unitary operators are represented as gates
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0 ∣ϕ⟩
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X Z

Figure 2.1: A quantum teleportation circuit

being applied to those wires.
Figure 2.1 shows the teleportation protocol from the previous section as a circuit.

We explicitly initialize the bell pair 1√
2
∣00⟩+ 1√

2
∣11⟩ in the part of the circuit labeled

“bell00”. The CNOT gate is given a special representation as a NOT (the ⊕ on
the bottom wire) “controlled” by the circle on the middle wire. Note that other
gates can be controlled as well, as in the gates in the segment labeled “bob.” Alice
applies a CNOT from the qubit to be transmitted to her member of the Bell pair,
then applies a Hadamard and measures both qubits. We represent the output of this
measurement using double lines, which represent classical bits. Bob uses these bits to
control whether he applies X and Z, thereby obtaining the state of Alice’s original
qubit.

2.4 Quantum States as Vectors
The exposition in the previous sections is somewhat lacking: It gives us a sense of
what a quantum state is, but it does not describe what operations are quantum-
mechanically valid, aside from the few operations given. To get a better sense of what
operations are possible, we will switch to vector notation.

For a single qubit, the vector corresponding to α ∣0⟩ + β ∣1⟩ is

(α
β
)

.
For the more general quantum state α0 ∣00 . . .0⟩ + α1 ∣00 . . .1⟩ + ⋅ ⋅ ⋅ + αn−1 ∣11 . . .1⟩

we have the following vector:
⎛
⎜⎜⎜
⎝

α0

α1

⋮
αn−1

⎞
⎟⎟⎟
⎠
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.
Note that the kth element in the matrix is the coefficient of ∣kb⟩, where kb is the

binary representation of k. This makes it easy to switch between representations.
What is the meaning of ∣ϕ⟩ ⊗ ∣ψ⟩ in vector notation? The tensor, or Kronecker

product, takes an m × n matrix A and o × p matrix B and returns a mo × np matrix
with copies of B tiled inside A. Visually, we have:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1,1B1,1 . . . A1,1B1,p . . . . . . A1,nB1,1 . . . A1,nB1,p

⋮ ⋱ ⋮ . . . . . . ⋮ ⋱ ⋮
A1,1Bo,1 . . . A1,1Bo,p . . . . . . A1,nB1,1 . . . A1,nBo,p

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Am,1B1,1 . . . Am,1B1,p . . . . . . Am,nB1,1 . . . Am,nB1,p

⋮ ⋱ ⋮ . . . . . . ⋮ ⋱ ⋮
Am,1Bo,1 . . . Am,1Bo,p . . . . . . Am,nB1,1 . . . Am,nBo,p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Note that in the vector case, multiplying an m length vector by an n length vector
returns a vector of length mn. However, the general case of the Kronecker product
will prove useful, as we will see shortly.

Exercise 4. Write (α ∣0⟩+β ∣1⟩)⊗(γ ∣0⟩+δ ∣1⟩) as a vector, first by taking the Kronecker
product directly and then by simplifying the expression and transforming it into vector
notation. Confirm that both results are equal.

2.4.1 Unitary transformations
What kind of operations are valid on quantum states? Let us begin by noting that
quantum states ∣ϕ⟩ correspond to unit vectors, or vectors of norm 1:

∥∣ϕ⟩∥ =
√
∣α1∣2 + ⋅ ⋅ ⋅ + ∣αn∣2 = 1.

A valid quantum operation should preserve this property and the size of the vector.
We call such operations unitary.

Unitary transformations correspond precisely to unitary matrices, square matrices
U satisfying the following:

UU † = I = U †U

Here I is the identity matrix, and the adjoint of U , U †, is a generalization of the
transpose that takes the complex conjugate Aij of all the elements. That is, it flips
the sign of the imaginary components of all the elements. For an example, let’s take
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the transpose of Wolfgang Pauli’s Y matrix:

Y † = (0 −i
i 0

)
†

= ( 0 i
−i 0

) = (0 −i
i 0

) = Y

We see that Y happens to be its own adjoint.
Let us now multiply Y by its adjoint to confirm that it is unitary:

(0 −i
i 0

)(0 −i
i 0

) = (0 + (−i)i 0 + 0
0 + 0 i(−i) + 0

) = (1 0
0 1
)

Theorem 1. For any unitary matrix U and unit vector ϕ, ∥U ∣ϕ⟩∥ = 1

Proof. The norm of ∣ϕ⟩ can be represented as the product of ∣ϕ⟩† and ∣ϕ⟩, also written
⟨ϕ∣ ∣ϕ⟩. Technically, this is a 1× 1 matrix, but it is isomorphic to a scalar. We call the
adjoint matrix ⟨ϕ∣ a bra and ∣ϕ⟩ a ket. Hence the norm of U ∣ϕ⟩ can be written as

∥U ∣ϕ⟩∥ = (U ∣ϕ⟩)†(U ∣ϕ⟩)
= ⟨ϕ∣U †U ∣ϕ⟩
= ⟨ϕ∣ ∣ϕ⟩
= 1

Here are the matrix forms of the operators H, X, and Z:

H = 1√
2
(1 1
1 −1) , X = (

0 1
1 0
) , Z = (1 0

0 −1)

The controlled version of any n-qubit gate U is represented by the block matrix

( I2n 0
0 U

)

The CNOT is simply the controlled X gate, and the controlled CNOT is called the
Toffoli (TOF or CCNOT ) gate.

Exercise 5. Note that H, X, Z, and CNOT are all their own adjoints. Verify that
these matrices are unitary.

Exercise 6. Show that H, X, Z, and CNOT have the behavior described in the
previous section. That is, show that when applied to basis vectors ( 10 ) and ( 01 ) they
produce the claimed output.

What does it mean mathematically to apply an operation to a single qubit in a
multi-qubit system? Suppose we want to apply an H to the second qubit of a three
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qubit system. We pad H on either side with 2 × 2 identity matrices and then apply
I2 ⊗H ⊗ I2 to the quantum state. An arithmetic identity called the Kronecker mixed
product says that (A⊗B)(C ⊗D) = AC ⊗BD (provided the dimensions line up), so
if the target system is separable into ∣ψ⟩1 ∣ϕ⟩ ∣ψ⟩2, we get

(I2 ⊗H ⊗ I2)(∣ψ⟩1 ∣ϕ⟩ ∣ψ⟩2) = (I2 ∣ψ⟩1)⊗ (H ∣ψ⟩)⊗ (I2 ∣ψ⟩2)
= ∣ψ⟩1 (H ∣ψ⟩) ∣ψ⟩2

as we would hope.
In general, a quantum computer can be expected to implement some number

of unitary operations as primitive gates, though the precise set of primitives will
differ based on architecture. It is important, however, that the implemented set be
universal for quantum computation – that is, it can be used to efficiently approximate
any unitary transformation. Here, the following two theorems are relevant:

Theorem 2 (Solovay-Kitaev). If a given set of gates can approximate any 2 × 2
unitary matrix, it can approximate any such matrix efficiently (with a sequence of
gates of length log3.97(1/ϵ) where ϵ is the allowed error).

Theorem 3 (Shi (2003)). Any unitary transformation U on n qubits can be approx-
imated using Hadamard and Toffoli gates or CNOT and any single qubit gate g such
that g2 ≠ I.

The Solovay-Kitaev1 theorem (Dawson and Nielsen, 2005; Nielsen and Chuang,
2010), which was generalized to multiple qubit matrices, tells us that universal gate
sets can generally be interchanged with little loss of efficiency, provided that they
consist of gates on small numbers of qubits. Hence, the specific choice of gate set is
likely to depend on a given quantum computer’s hardware. Shi (2003) gives a number
of strong candidates for universal sets to use in practice; Aharonov (2003) discusses
the variety of gate sets known to be universal.

Many functions do not correspond to valid unitary transformation and therefore
cannot be applied to quantum states. One important such function is the subject of
the no-cloning theorem:

Theorem 4 (No Cloning). There is no unitary transformation that copies the state
of an arbitrary qubit (that is, takes ∣ϕ⟩ ∣0⟩ to ∣ϕ⟩ ∣ϕ⟩).

This theorem is due to Dieks (1982) and Wooters and Zurek (1982); a succinct
proof is given on page 523 of Nielsen and Chuang (2010). The no-cloning theorem
will motivate our use of linear types (which prevent us from copying terms) in the
Qwire quantum circuit language (Chapter 4).

1This result was announced by both Solovay and Kitaev, but there is no corresponding publica-
tion; see Dawson.
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2.5 Mixed States as Density Matrices
At this point, we want to expand our notion of quantum states. So far, a quantum
state has simply been a 2n-length complex vector, whose norm is equal to one. From
here on we will call this a pure state. Note, however, that one of our operations—
measurement—takes a pure state to a distribution over pure states. Since we would
like to talk about these distributions directly, we will refer to them as mixed states.

Consider what happens if we apply a Hadamard H to the basis state ∣0⟩ and then
measure it. We will obtain a distribution over ∣0⟩ and ∣1⟩, with 1

2 probability assigned
to each outcome. We can (naively) write this as

{ (1
2
, ∣0⟩), (1

2
, ∣1⟩) }

where the real numbers on the left represent probabilities and the quantum states on
the right represent measurement outcomes.

What if, without looking at the outcome of the measurement, we then apply
another Hadamard to the state? We should obtain

{ (1
2
,H ∣0⟩), (1

2
,H ∣1⟩) }

which expands out to

{ (1
2
,
1√
2
∣0⟩ + 1√

2
∣1⟩), (1

2
,
1√
2
∣0⟩ − 1√

2
∣1⟩ }.

An interesting theorem of quantum mechanics says that the two distributions
mentioned above are physically indistinguishable. For instance, if we measured either
of the distributions above and examined the outcome, we would obtain ∣0⟩ with prob-
ability 1

2 and ∣1⟩ with probability 1
2 . If we applied a Hadamard to either state, we

would simply toggle between the two indistinguishable states, since HH ∣0⟩ = ∣0⟩ and
likewise for ∣1⟩. Ideally, any language for talking about these states would identify
them, but here the language of probability distributions over quantum states fails us.

Instead, we present an alternative way of representing quantum states that iden-
tifies these distributions with each other. A density matrix is a square matrix of
dimensions 2n×2n that we can use to represent both pure and mixed quantum states.
We can convert a pure state ∣ϕ⟩ in vector form to its density matrix representation by
multiplying it by its adjoint, commonly written ⟨ϕ∣. So, for instance, the basis states
∣0⟩ and ∣1⟩ become

∣0⟩ ⟨0∣ = (1
0
)(1 0) = (1 0

0 0
)

and
∣1⟩ ⟨1∣ = (0

1
)(0 1) = (0 0

0 1
) .
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Conveniently, we can check if a density matrix corresponds to a pure state by
squaring it. For any pure state ρ in density matrix form, ρ2 = ρ, and this is true only
of pure states.
Exercise 7. Prove the first half of the above statement.

What if we want to apply a unitary matrix U to some quantum state ρ in its
density matrix form? Let us first consider the case in which ρ = ∣ϕ⟩ ⟨ϕ∣ (that is, ρ is a
pure state). Applying U to ∣ϕ⟩ ⟨ϕ∣ should give us (U ∣ϕ⟩)(U ∣ϕ⟩)†. We can distribute the
adjoint over multiplication, obtaining (U ∣ϕ⟩)(∣ϕ⟩†U †), which we write as U ∣ϕ⟩ ⟨ϕ∣U †.

This gives us the formula for applying a unitary to a density matrix: We multiply
the matrix by U on its left and U † on its right. Since density matrices and unitary
operators are always square, if the dimensions are correct on the left, they will match
up on the right.

What about measurement? This representation has the advantage of treating mea-
surement as a deterministic operation on density matrices, rather than a probabilistic
operation on vectors. Measuring a single qubit can be represented as follows:

meas ρ = ∣0⟩ ⟨0∣ρ ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣ρ ∣1⟩ ⟨1∣

You can think of this operation as adding together the two outcomes of measure-
ment. The left hand side represents the event of measuring ∣0⟩ and the right-hand
side, measuring ∣1⟩.

Let us return to the example that started this section. We start with the 0 qubit,
represented in density matrix form as

(1 0
0 0
) .

We then apply a Hadamard operator, obtaining

1√
2
(1 1
1 −1)(

1 0
0 0
)( 1√

2
(1 1
1 −1)) =

1

2
(1 1
1 1
) .

We then measure the state:

(1 0
0 0
)(1

2
(1 1
1 1
))(1 0

0 0
) + (0 0

0 1
)(1

2
(1 1
1 1
))(0 0

1 0
)

=1
2
(1 0
0 0
) + 1

2
(0 0
0 1
)

=1
2
(1 0
0 1
)

As we see from the second line, there is a one-half probability of measuring ∣0⟩ and
one-half-probability of measuring ∣1⟩. This helps us interpret the result. Each element
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along the diagonal represents the probability of obtaining the corresponding basis
state upon measurement (when we look at the result). Note that this was also true
before we measured the state: Measurement simply removed the elements that weren’t
along the main diagonal, which indicated that the qubit was in a superposition, rather
than a simple distribution.

As we noted earlier, applying another Hadamard to this state doesn’t change it:

1√
2
(1 1
1 −1)(

1

2
(1 0
0 1
))( 1√

2
(1 1
1 −1))

=1
4
(1 1
1 −1)(

1 1
1 −1)

=1
4
(2 0
0 2
)

=1
2
(1 0
0 1
)

Exercise 8. Show that for a pure state in density matrix form, the ith element along
the diagonal is the probability of measuring ∣i⟩.

Initializing and Discarding Qubits We’ve covered how to operate on qubits,
both by applying unitary operators and by measuring them. But how do we represent
adding new qubits to a system or discarding existing qubits?

Let’s start with initialization. Adding a qubit to first position in a quantum state
takes ∣ϕ⟩ to ∣0⟩⊗ ∣ϕ⟩. This corresponds to multiplying by ∣0⟩⊗ I on the left, where I
is the identity matrix with the same height as the target vector. In density matrix
form, this corresponds to taking (∣0⟩ ⊗ I)ρ(⟨0∣ ⊗ I). This takes a density matrix of
dimensions 2n × 2n to one with dimension 2n+1 × 2n+1.

What about discarding a qubit? We cannot discard arbitrary qubits, because they
might be entangled with the rest of the state. However, if we want to discard a ∣0⟩,
we can simply reverse the operation that initializes ∣0⟩:

(⟨0∣⊗ I)(∣0⟩⊗ I) ∣ϕ⟩ = (⟨0∣ ∣0⟩⊗ I) ∣ϕ⟩ = (I1 ⊗ I) ∣ϕ⟩ = ∣ϕ⟩

We can do the same thing for ∣1⟩. In density matrix form, we write (⟨0∣⊗I)ρ(∣0⟩⊗I)
or (⟨1∣⊗I)ρ(∣1⟩⊗I). Density matrices also allow us to deal with the more general case,
where we may not know whether the qubit to be discarded is ∣0⟩ or ∣1⟩. We then write
the discard operation as (∣0⟩⊗ I)ρ(⟨0∣⊗ I)+ (∣1⟩⊗ I)ρ(⟨1∣⊗ I). Note that if the qubit
to be discarded is ∣0⟩, the right hand side will contain a ⟨1∣ ∣0⟩ = 0, and everything to
the right of the + will be the zero matrix. The same is true for ∣1⟩ and the left hand
side. This form of discard is convenient, in that it also applies to a superposition—in
this case, the qubit is implicitly being measured and then discarded. This accounts
for the similarity to meas above: Measurement can be thought of as measuring and

19



discarding a qubit, then adding a new qubit in the measured state.
This should be sufficient to understand the semantics of quantum programs, which

we will introduce in the upcoming sections.

2.6 Additional Material
In this chapter, we have tried to cover those aspects of quantum computing, and only
those aspects, that are relevant to this thesis. This means that we have avoided a lot of
terminology that a reader might expect to see in a paper on quantum computing. Most
introductions to quantum computing will refer to Hilbert spaces, vector spaces that
possess an inner product (⟨ϕ∣ ∣ψ⟩ for quantum states, often written ⟨ϕ ∣ ψ⟩). Infinite-
dimensional Hilbert spaces are of substantial interest to quantum physicists and have
additional properties; however, quantum computation only deals with the specific
case of finite-dimensional complex-valued vectors.

We also never explicitly discussed interference. Interference refers to two ampli-
tudes canceling one another out. We saw this when we applied a Hadamard twice
and obtained 1

2 ∣0⟩ +
1
2 ∣1⟩ +

1
2 ∣0⟩ −

1
2 ∣1⟩ = ∣0⟩. From a physical standpoint, this is an

interesting phenomenon (how are two non-zero probability events combining to form
a zero-probability event?), but from a mathematical standpoint, it’s captured in the
mundane statement, “superposition behaves like addition”.

Qubits are often visualized as points on a sphere, called the Bloch sphere, where the
poles correspond to ∣0⟩ and ∣1⟩. Using this model, we can visualize unitary operators
as rotations around the sphere. In particular, Pauli’s X, Y , and Z matrices are so
named because they represent rotations around the x, y, and z axes. For our purposes,
however, the vector and matrix representations of qubits have proven more useful,
and geometric discussions would complicate the picture.

Readers interested in the details of quantum computing and information the-
ory beyond those presented here are advised to consult Nielsen and Chuang’s stan-
dard text on the subject (2010) or John Watrous’s “Theory of Quantum Informa-
tion” (2018).
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Chapter 3

A Brief History of Quantum
Programming and Verification

3.1 Circuits, QRAM and Classical Control
The simplest and most influential model of quantum computation is the quantum cir-
cuit model (Deutsch, 1989), in which quantum operations are represented as quantum
circuits like those in Section 2.3. Unfortunately, as Knill (1996) noted, circuits alone
are insufficient to describe many quantum algorithms. In particular, many quantum
algorithms assume a sort of control flow in which quantum operations are executed,
the results are measured, and classical computations are run on the results. This cy-
cle is often repeated as many times as necessary. In response, Knill proposed a set
of guidelines for writing pseudocode for quantum algorithms, revolving around the
Quantum Random Access Machine, or QRAM.

The QRAM model assumes that a quantum program has distinct sets of quantum
and non-quantum (classical) registers. The quantum registers are very limited in
their use: We can initialize quantum registers, apply unitary operations to them, and
measure them, turning them into classical registers. The results of the measurement
can then be used to perform classical computations. Implicitly, all of the quantum
operations are performed on a quantum processor, while the remaining operations are
performed locally, as in the following diagram:

Classical
Computer

Quantum
Computer

quantum queries

measurement results

This model describes low-level languages like QASM (Balensiefer et al., 2005),
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OpenQASM (Cross et al., 2017), and Quil (Smith et al., 2016) fairly precisely: Each
has distinct registers used for quantum computation, which the controlling machine
may measure and use in its computation. These “quantum assembly” languages are
used in practice to run quantum computations on IBM’s 20-qubit quantum computer
(the IBM Quantum Experience) and Rigetti Computing’s online Quantum Processing
Units.

Knill’s pseudocode guidelines suggest that quantum registers might also be used
as the guard in an IF-THEN-ELSE block, without detailing how to ensure such oper-
ations are quantum mechanically valid. In “Towards a Quantum Programming Lan-
guage,” Selinger (2004a) proposes a narrower model for quantum computing known
as quantum data, classical control. This widely adopted model states that the control
flow of a quantum program should always be classical: Though we take advantage
of the superposition of data, such as qubits, we should not attempt to run superpo-
sitions of programs. Instead, a quantum program should use classical conditionals,
loops, and recursion. Most of the languages discussed below follow this framework,
with the exception of QML (Altenkirch and Grattage, 2005). We will discuss the
alternative approach, known as quantum control, in Section 3.9.

So far, we’ve portrayed the interaction between classical and quantum processors
as unidirectional: The classical processor sends operations to the quantum computer,
which returns measurement results. However, this doesn’t tell the whole story. Occa-
sionally, a quantum computation will itself depend upon some complicated classical
computation, which we wouldn’t want to run on a dedicated quantum processor. This
classical computation, in turn, might depend on some measurement results. To deal
with this, Green et al. (2013a) introduce the notion of dynamic lifting. This operation
is initialized by the quantum processor, which sends data to the classical processor
and asks it to compute the remainder of the quantum operation (in Quipper’s case,
a circuit) for the QRAM to execute.

Classical
Computer

Quantum
Computer

classical queries

circuit continuations

Many of the languages we will look at implement some form of dynamic lifting.

3.2 QCL: A General Purpose Quantum Language
In two masters theses (Ömer, 1998; Ömer, 2000) and a PhD thesis (Ömer, 2003),
Bernhard Ömer paved a path that future quantum programming languages would
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follow. His QCL, an imperative-style language, included support for advanced features
like management of scratch qubits (or ancillae) and automatic circuit reversal.

QCL adheres pretty closely to Knill’s (1996) guidelines for quantum programming
languages. It assumes that execution of a quantum program is primarily guided by a
classical computer, which has an attached QRAM device for quantum operations.

In QCL, quantum operations are applied to sets of quantum registers. There are
various restricted forms of registers that allow for constant-valued qubits or registers
used exclusively for scratch space. These quscratch registers are garbage-collected
by a procedure that returns them to the ∣0⟩ state using Bennett’s (1973) technique.
We discuss this technique in detail in Chapter 8.

QCL also allows for a sort of quantum conditional. We can annotate any function
with the keyword cond to control all of its operations by a control qubit provided as an
argument. This necessarily restricts the function being controlled—it must correspond
to a unitary transformation on all its qubits; moreover, it cannot reference the control
qubit itself. This is accomplished via strict scoping rules. This construction is then
extended to allow for a limited quantum if statement and a bounded quantum while
loop.

Even more so than Knill (1996), QCL established a baseline for what quantum
programming languages should be able to do as well as a yardstick against which
other languages could compare themselves (see, for instance, Rüdiger (2006); Green
et al. (2013a)).

3.3 QPL: Semantics for Quantum Programming
Selinger (2004a) introduced QPL (also called QFC, for Quantum Flowchart Lan-
guage), the first quantum programming language with a well-defined denotational
semantics, including a semantics for recursion given in terms of least-fixpoints. QPL
is a flowchart language: The primary representation of a QPL program is a directed
graph with branching corresponding to conditional statements (cycles correspond to
loops). QPL also has a more standard representation as a functional programming
language with an imperative-style syntax. That is, while it is written in an imper-
ative style, it has no notion of state and its only side-effects are measurement and
non-termination.

The semantics of QPL is given in terms of 2n-tuples of partial density matrices,
where n is the number of classical bits in the system. (A partial density matrix is one in
which the trace does not add up to one, and hence corresponds to a subdistribution
on pure states.) Each member of this tuple has an index from 00 . . .0 to 11 . . .1,
representing the value of all the bits in the system, so the 010th matrix corresponds to a
state in which only the second bit is 1. Each density matrix encodes the probability of
this configuration in its trace. By contrast, the individual density matrices themselves
encode the amplitudes of the program’s qubits. It’s worth nothing that an equivalent
semantics can be given using a single 2n+m × 2n+m density matrix, where n and m are
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new qbit q:=0

q ∗=H

measure q

output q output q

0 1

Figure 3.1: A QPL program for tossing a quantum coin

the number of bits and qubits, respectively, by treating bits as simply qubits that
are always in one of the basis states. This representation is rejected in the paper in
favor of economy of representation, since large sparse matrices take up a lot of space,
but it is more conceptually parsimonious (easy to explain and reason about) and was
adopted as the semantics for QPL by Kakutani (2009).

QPL syntax prohibits cloning qubits: While QCL and other languages fail at
runtime if the user attempts to use the same qubit as both arguments to a CNOT
gate, QPL doesn’t allow aliasing and can therefore check that the arguments are
distinct at compile time.

While representing circuits as flowcharts didn’t catch on among quantum pro-
gramming languages, QPL conveyed some important ideas that gained wide currency.
Instead of including a quantum analogue of the IF statement, QPL treats measure-
ment itself as a branching construct, as can be easily seen in Figure 3.1. QPL was
also adopted as a target for verification efforts: Kakutani’s (2009) quantum Hoare
logic QHL reasons about QPL programs, and QPL programs are given a weakest
pre-expectation semantics by D’Hondt and Panangaden (2006). D’Hondt and Panan-
gaden’s WP semantics is dual to the given semantics for QPL and was used in a
subsequent line of work on quantum logics (Ying, 2011; Ying et al., 2017; Li and
Ying, 2018).

Muerer’s cQPL (2005) extends QPL with the ability to communicate with a clas-
sical computer, in line with the QRAM model, and a compiler to C code via QCL.
Nagarajan et al. (2007) provide a compiler to an instruction set for a Sequential
Quantum Random Access Memory (SQRAM) machine, based on Knill’s QRAM. Un-
fortunately, neither contribution was sufficient to make QPL into a general purpose
quantum programming language. Instead, QPL made a lasting contribution to the
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areas of denotational semantics for quantum programs and compile time restrictions
on cloning qubits. This work would form the basis for the quantum lambda calculi.

3.4 Linearity and the Quantum Lambda Calculi
Unlike in classical computation, where Alan Turing’s eponymous machines (1937)
and Church’s lambda calculus (1936b) were invented simultaneously, David Deutsch’s
quantum Turing machine (Deutsch, 1985) is widely considered the “founding paper”
of quantum computing (though Feynman (1982), Benioff (1980), and Albert (1983)
presaged it). The more popular quantum circuit model was also introduced by Deutsch
(1989); Yao (1993) would demonstrate the two models’ equivalence. Quantum versions
of the lambda calculus would follow, beginning with van Tonder’s (2004) λq.

λq attempts to address four issues with mixing classical and quantum computation:

1. reversibility of computation,

2. linearity of quantum states,

3. equational reasoning, and

4. completeness, or equivalence to the quantum Turing machine model.

All quantum computations must necessarily correspond to reversible functions.
Unfortunately, many terms in the lambda calculus reduce to the same value, making it
impossible to recover the original input (thereby making the computation irreversible
and quantum mechanically impossible). Van Tonder addresses this by modifying the
reduction rules in his calculus so that every reduction rule leaves a history, which
allows us to recover the original lambda term.

The calculus also deals with linearity by introducing two kinds of lambda abstrac-
tions: λx.t takes a linear variable to some expression t, in which x must appear exactly
once. By contrast, λ!x.t may use x non-linearly and hence may only be applied to a
non-linear term. Since λq has no type system, a non-linear lambda applied to a linear
term is simply stuck.

Van Tonder defines an equational proof system for λq, allowing us to reason about
the equivalence of λq expressions. He also sketches a proof of equivalence between the
lambda calculus and Deutsch’s quantum Turing machine. In one direction, he shows
that a quantum TM can simulate the reduction of a λq expression; in the other, he
shows that λq can express arbitrary quantum circuits, which Yao (1993) showed to
be equivalent to quantum Turing machines.

In subsequent work, van Tonder and Dorca (2003) developed a type system and
denotational semantics for λq. Unfortunately, the categorical semantics, given in terms
of “Hilbert bundles,” had a flaw, and the paper was withdrawn. This brings us to
Selinger and Valiron’s lambda calculus, which successfully incorporated these features.
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∣ϕ⟩

0

0 ∣ϕ⟩

H

alice

H meas

meas

bob

X Z

Figure 3.2: The teleportation function, composed of the entangled functions “alice”
and “bob”

Selinger and Valiron’s (2006; 2008; 2009) Quantum Lambda Calculus is primarily
concerned with quantum functions and linear type systems for typing these functions.
To get a sense for quantum functions, let’s take another look at the teleport circuit
(Figure 3.2). Normally we would think of the alice circuit as a function from two
qubits to two bits, and we would think of bob as a function from a qubit and two
bits to a qubit. But this isn’t quite accurate: Quantum teleportation only works when
Alice and Bob share a pair of entangled qubits, or Bell pair, produced by the sub-
circuit at the bottom left. These should be treated as a shared resource, not a separate
pair of inputs. The alice function then takes a single qubit and returns a pair of
bits, while bob takes a pair of bits and returns a qubit. We can then say that for any
qubit q, bob (alice q) = q. Since these two functions share entangled qubits, we
call them entangled.

Another unique feature of these two quantum functions is that they’re limited
in their use. The alice circuit can clearly only be used once, since it measures (and
thereby destroys) its half of the Bell Pair. By contrast, bob never measures its half, but
it outputs that qubit and, hence, can no longer use it. This inspires the development
of a type system to guarantee that quantum data, including quantum functions, is
never duplicated.

To be precise, Selinger and Valiron’s lambda calculus incorporates an affine type
system that ensures that quantum data is used at most once. This prohibits the
programmer from copying data, whether in the form of qubits or quantum functions.
The type system also provides a ! (bang) operator to indicate types that may be
used multiple times, along with a subtyping system that allow terms of type !A to be
used wherever an A is called for. The quantum lambda calculus has an operational
semantics and a categorical semantics, which are valuable but not of direct relevance
to this thesis, and proofs of type soundness (progress and preservation).

These lambda calculi, and their type systems in particular, had significant impact
on subsequent programming languages, especially Quipper and our language, Qwire.
Before we talk about Quipper and Qwire, though, we should address another lan-
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guage that strongly influenced both.

3.5 The Quantum IO Monad
Altenkirch and Green’s (2010) Quantum IO Monad (QIO) took some early steps
towards embedding quantum computation inside a functional host language. QIO
was influenced by the quantum meta-language QML (Altenkirch and Grattage, 2005),
also embedded inside Haskell, but had less ambitious goals: Instead of constructing
a new language that mixes quantum and classical computing (including a quantum
if statement), QIO provides a monadic interface for the Haskell programmer to run
quantum programs. Treating quantum computing as a monad has several advantages:

1. It neatly separates quantum and classical computation, preventing the pro-
grammer from attempting to misuse quantum data in a classical program;

2. it gives QIO access to the full power of Haskell, including its typeclasses and
libraries; and

3. it doesn’t restrict QIO to Haskell alone.

This last point was clearly illustrated by Green’s thesis (2010), which embed-
ded the Quantum IO Monad inside Agda. Agda (Bove et al., 2009), like Coq, is a
dependently-typed programming language that can also be used as a proof assistant.
The Agda implementation of QIO uses dependent types to prevent some instances of
qubit copying; for instance, applying a CNOT to the wires x and y requires a proof
that x and y are distinct. However, Green embedded QIO in Agda mainly with an
eye towards formal verification.

QIO includes a USem structure for representing the semantics of unitary opera-
tors. This is easily defined upon the classical fragment of unitary gates—gates like
X, CNOT , and CCNOT that can be expressed as functions on bits. For an arbitrary
unitary gate U , it defines the semantics of U in terms of its effect on each of the basis
states. Unfortunately, due to Agda’s lack of automation or a real or complex number
library (the author wrote a small axiomatic library of his own), it proved difficult to
prove that unitaries are, in fact, unitary, or to prove any properties of quantum cir-
cuits. Nevertheless, QIO presaged our own efforts in this area and influenced Quipper,
from which we took substantial inspiration.

3.6 Quipper and the Proto-Quippers
The Quipper programming language (Green et al., 2013a,b) was developed in the
context of IARPA’s QCS project (IARPA, 2010), which challenged programming
language developers to “accurately estimate and reduce the computational resources
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required to implement quantum algorithms on a realistic quantum computer.” Javadi-
Abhari et al.’s Scaffold (2012; 2015), a powerful imperative quantum programming
language, was also developed as part of the QCS initiative. Quipper, like QML and
QIO, is embedded within Haskell, but its primary focus is on scalable quantum com-
puting. Towards that end, Quipper has a number of advanced features, including the
ability to compile classical programs to quantum circuits, optimize circuits, and sim-
ulate quantum computation within Haskell. Quipper was initially used to implement
seven complex quantum algorithms and study their resource requirements (Green
et al., 2013a; Smith et al., April 2014). Siddiqui et al. (2014) also used Quipper to
program a number of popular quantum algorithms, including Grover’s and Shor’s.

More than most languages, Quipper is transparent about its weaknesses. Quipper
describes circuit families, broad classes of circuits that can be instantiated with a
variety of different inputs. Unfortunately, this means that we only know the shape of
these circuits (their inputs and outputs) at runtime. Quipper lacks both linear types
and dependent types, the first of which can guarantee that qubits are not cloned,
while the second can describe precise circuit families by giving their dependently
typed signatures at compile time. On account of being embedded inside Haskell,
Quipper lacks a denotational semantics, which makes it difficult to reason about
Quipper programs. Quipper also makes heavy use of assertive terminations, where the
programmer asserts that a qubit is in a specific state, but has no way of guaranteeing
that these assertions are true. These assertions are used throughout the Quipper
development, particularly in its compiler from classical to quantum programs.

These flaws directly influenced the development of our language, Qwire. In fact,
the Quipper papers can be read as a series of challenges to quantum programming
language designers to which this thesis is a response. Chapter 4 takes up the challenge
of including both linear and dependent types in a quantum programming language and
giving that language a formal semantics. Chapter 5 addresses the issue of embedding
a Quipper-like language inside a proof assistant, and Chapters 6 and 7 explore the
payoff of doing so. Chapter 8 tackles the question of guaranteeing ancillae are used
correctly and writing a verified compiler from classical programs to quantum circuits.

Having posed these challenges, the designers of Quipper also sought to answer
them, in the context of a series of self-contained (non-embedded) languages called
Proto-Quippers1. The original Proto-Quipper (Ross, 2015) came equipped with a lin-
ear type system, inspired by Selinger and Valiron’s quantum lambda calculus (Selinger
and Valiron, 2009). This type system treats all types as linear by default and uses
the bang operator (!) to denote a persistent type. A subtyping relation allows us to
use persistent variables in place of linear variables, though never the reverse. Proto-
Quipper also allows us to package (or box) functions on qubits into circuits that are
treated as data, and then to unbox these circuits later. As we will see, Qwire uses

1We feel that these languages should be called Meta-Quippers, for “that which comes after Quip-
per.” The Proto-Quipper authors seemingly intended that these language should eventually evolve
into an idealized Quipper, with all the functionality of Quipper and all the underlying challenges
addressed.
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boxing and unboxing in a similar fashion.
Another version of Proto-Quipper, called Proto-Quipper M (Rios and Selinger,

2017), endows Proto-Quipper with a categorical semantics. Lindenhovius et al. (2018)
extend Proto-Quipper M with general recursion and give it an abstract categorical
model. This model takes inspiration from Rennela and Staton’s (2017) categorical
model for EWire, itself an extension of Qwire, completing the loop.

3.7 Liquid, Revs and Q#
The final languages we would like to dwell upon here are Microsoft’s Liquid (gener-
ally typeset as LIQUi∣⟩) and Q#, as well as the related Revs programming language.
Liquid (Wecker and Svore, 2014) runs with Quipper’s idea of embedding a quantum
circuit generating core inside a general purpose functional language, in this case F#.
Liquid describes not only a language but a system for programming a quantum com-
puter: Its major focuses are compilation, simulation and resource analysis. Liquid
includes a variety of powerful circuit optimizations which have been proven, outside
of Liquid, to maintain the semantics of the optimized circuit. It also provides multiple
ways of simulating circuits to allow for more efficient simulation where possible (for
instance, on Clifford group circuits).

An important outgrowth of the Liquid project was the Revs platform (Parent
et al., 2017) for reversible computing. Revs is designed to compile classical programs
to reversible circuits made out of Toffoli (CCNOT ), CNOT , and X gates. Revs is
not explicitly quantum, but it can export circuits to Liquid. Like Quipper’s com-
pilation, Revs uses ancilla qubits and assertive terminations for efficiency. It also
uses a strategy called pebble games to substantially optimize the compiled circuits.
From the perspective of this thesis, the most interesting part of this work is the more
lightly optimizing compiler ReVerC (Amy et al., 2017). ReVerC shares a source
and target language with the Revs compiler, but it is formally verified in the F⋆
programming language (Swamy et al., 2011). This guarantees that ancillae are termi-
nated correctly and that compiled circuits correspond to their input functions. This
strongly influenced Qwire’s own approach to ancillae and compilation, discussed in
Chapter 8.

As part of a recent turn away from embedded languages, Microsoft Research re-
leased a successor to Liquid called Q#. Q# is probably the most powerful stand-alone
language for quantum computing. Officially, Q# has no model of a quantum circuit,
instead treating qubits as first-class objects. However, it isn’t difficult to read a Q#
program as generating a circuit, and Q# programs can indeed be compiled to quan-
tum circuits — much of the documentation even uses this abstraction. However, Q#
often eschews the circuit model in favor of describing quantum-classical algorithms
like the repeat-until-success loop. Q# makes some distinctions between simulated
quantum programs and those run on a quantum computer. For instance, it allows
the programmer to make assertions about the state of a qubit, like those in Quipper,
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which will be checked by the simulator and ignored by a real quantum computer,
since checking these assertions requires inspecting the quantum state without mea-
suring it. This capability augments Q#’s facility for managing ancillae, including
borrowing arbitrary qubits to return them to their initial state, but still doesn’t guar-
antee that ancillae are used correctly, as ReVerC does in the classical setting. As a
highly expressive standalone language with support for polymorphism and a variety
of quantum-specific abstractions, Q# stands on the frontier of quantum programming
languages, albeit in a way that is largely orthogonal to Proto-Quipper and Qwire.

3.8 The World of Quantum Programming
In this chapter, we have avoided giving a full account of the history of quantum
programming languages in favor of focusing on the languages that most influenced
our own work. Some of the early languages that we have neglected to discuss include
Stephen Blaha’s (2002) Quantum C Language and a language by Bettelli et al. (2003)
known colloquially as the “Q” language. We also neglected some recent work on
quantum lambda calculi, including the work of Altenkirch et al. (2007) and Vizzotto
et al. (2009a,b, 2013).

More recently, a variety of Python libraries have been developed for quantum com-
puting, most prominently Project Q (Steiger et al., 2018) and Rigetti Computing’s
PyQUIL (Rigetti Computing). Scaffold and the ScaffCC compiler (Javadi-Abhari
et al., 2012, 2015; Heckey et al., 2015) also provide a powerful quantum computing
platform. Other interesting recent languages include the Blackbird language for pho-
tonic quantum computing (Killoran et al., 2018), QUMIN (Singh et al., 2017), IQu
(Paolini et al., 2017), and qPCF (Paolini and Zorzi, 2017).

We also haven’t discussed more limited circuit description languages designed
for execution on a quantum computer, though these are critical in practice. One
of the earliest such languages was QASM (Balensiefer et al., 2005), designed to be a
universal target for quantum programming languages. QASM was recently superceded
by OpenQASM (Cross et al., 2017), which is used in a number of popular simulators
and IBM’s online quantum computer (IBM, 2017). Rigetti’s QUIL (Smith et al.,
2016) is part of their broader FOREST platform and directly targets Rigetti’s own
quantum cloud. Ongoing work by Dong-Ho Lee (to be discussed in Section 11.2) uses
OpenQASM as a compilation target for Qwire.

3.9 Models of Quantum Computation
In this chapter, we have discussed a fairly narrow, though popular, approach to quan-
tum computing: a quantum circuit model with classical control. However, a number
of alternative models exist. The notion of quantum control, in which multiple pro-
grams may be run in superposition with one another, is hotly debated. For a negative
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view on the prospects for quantum control, see Badescu and Panangaden (2015).
This view, and the argument that quantum control is in the general case impossible,
has failed to dissuade certain researchers in the field. Ying et al. (2012, 2014) pro-
poses notions of quantum alternation and quantum recursion. QML (Altenkirch and
Grattage, 2005) includes a basic form of quantum branching subject to strong con-
straints; indeed, notions of quantum branching go back to the original QRAM paper
(Knill, 1996). More recently, Sabry et al. (2018) proposed a language with quantum
loops and recursion, but without measurement, in which all programs are guaranteed
to terminate and shown to correspond to valid quantum computations.

A few other approaches don’t use quantum circuits at all. A one-way quantum
computer (Raussendorf and Briegel, 2001, 2002) can do general-purpose quantum
computation using only an initial fully-entangled state and single qubit measure-
ments. The measurement calculus (Danos et al., 2007, 2009) can be viewed as a
programming language for this kind of one-way quantum computer. Inspired by the
category theory of quantum computation, categorical quantum mechanics (Abramsky
and Coecke, 2004; Coecke and Kissinger, 2017) models a quantum process as an undi-
rected graph, leading to languages like the ZX-Calculus (Coecke and Duncan, 2008;
Backens, 2014) and ZW-Calculus (Hadzihasanovic, 2015, 2017). One crucial contri-
bution of these languages is their equational theories and extensive rewriting systems,
which are used to optimize ZX-diagrams in the Quantomatic tool (Kissinger, 2011;
Fagan and Duncan, 2018). Further afield lies D-Wave’s approach to quantum com-
puting, which is based on adiabatic quantum computing (Albash and Lidar, 2018)
and is targeted at specific problems like simulated annealing (an approach to finding
maxima for functions) (Johnson et al., 2011). The D-Wave machines are programmed
using quantum machine instructions in a variety of programming languages (D-Wave
Systems, Inc, 2013).

Unfortunately, most surveys of quantum programming languages are at least seven
years old, a lifetime in this field. For more information on early quantum programming
languages, we refer the reader to surveys by Selinger (2004b), Gay (2006), Rüdiger
(2006), and Miszczak (2011). For more up-to-date information, the discussion section
of Svore et al. (2018) may prove enlightening.

3.10 Formal Verification
The area of formally verified quantum computing is less developed than that of quan-
tum programming languages. Nevertheless, it is worth looking at two approaches
that are relevant to this dissertation: logical systems for reasoning about quantum
programs and mechanized proofs of results from quantum information theory.
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3.10.1 Quantum Logics
A variety of approaches have been taken towards verifying quantum programs, the
most common being program logics. These include quantum versions of guarded com-
mand language (Sanders and Zuliani, 2000), dynamic logics (Brunet and Jorrand,
2004; Baltag and Smets, 2006, 2011), and Hoare logics (Chadha et al., 2006; Kaku-
tani, 2009; Ying, 2011; Ying et al., 2017). Two of these logics are of particular interest
to us.

Ying’s (2011) quantum Hoare logic reasons about quantum weakest preconditions.
A quantum weakest precondition (D’Hondt and Panangaden, 2006) adapts the no-
tion of a weakest precondition to a quantum setting in much the same way that
Kozen’s (1985) weakest pre-expectations generalize preconditions to a probabilistic
setting. In both settings, the claims are arithmetic: The judgment {P} c {Q} says
that for any initial state σ, P (σ) ≤ Q(JcKσ) (plus a probability of non-termination,
in the partial case) for some suitable order ≤. In the probabilistic case, this is just
the standard order on real numbers, and P and Q are measurable functions. In the
quantum case, P and Q come from a class of matrices called observables, and ≤ is the
Löwner partial order on matrix traces. Ying (2011) embeds this in a logic, later ex-
tended with proof techniques to guarantee program termination (Ying et al., 2017).
This logic was embedded within the Isabelle/HOL proof assistant (Nipkow et al.,
2002), allowing for mechanized proofs about quantum programs (Liu et al., 2016).

Another interesting logic was also mechanized using Isabelle/HOL. Unruh’s (2018)
Quantum Relational Hoare Logic (QRHL) is based upon Barthe et al.’s (2012) Prob-
abilistic Relational Hoare Logic, used in the EasyCrypt cryptographic tool. QRHL
makes assertions about the relationships of two quantum programs to one another,
with the goal of proving indistinguishability. These assertions allow us to prove the
security of quantum security protocols and show that classical protocols are secure
in the quantum setting. QRHL forms the core of an EasyCrypt-like tool for proving
quantum security, available at https://github.com/dominique-unruh/qrhl-tool.

3.10.2 Mechanized Verification
We found two other compelling approaches to quantum verification. The first, Boender
et al.’s (2015) “Formalization of Quantum Protocols using Coq,” attempts to directly
prove properties of quantum programs inside the Coq proof assistant. Here, qubits
are defined as simple length-2 vectors (then generalized to length-2n vectors), and
quantum programs are defined directly as transformers on these qubits. This is used
to prove the correctness of some quantum programs, though ones without any levels
of abstraction.

More recent work by Amy (2018) verifies the correctness quantum circuits by
means of Feynman path integrals (Feynman and Hibbs, 1965). A path integral cal-
culates the amplitude of a quantum state as the sum over possible paths to that
state. In the general case, this would require using integrals, but quantum comput-
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ing discretizes qubit states, allowing us to take simple sums. Amy uses these path
sums to give a semantics to quantum circuits and proposes an algorithm for sim-
plifying these sums, allowing us to check equivalence. This approach is shown to be
complete for Clifford-group circuits, in that simplification will always terminate and
produce a unique normal form. In the general case, this procedure is not guaranteed
to terminate, but in practice, it has proven the correctness of a number of important
programs, including the quantum Fourier transform. It has some drawbacks, though,
in that these proofs are only for circuits of fixed size, and the technique is only used
to verify simple circuits rather than complex quantum programs. Interestingly, this
verification is all done in Haskell, which means that it doesn’t produce proof terms
that can be used in larger proof developments.

This concludes our introduction to quantum programming and verification. In
subsequent chapters, we will describe our attempt to apply formal verification in the
context of a full-fledged quantum programming language, Qwire.
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Chapter 4

Qwire in Theory

4.1 Introduction
The standard architecture for quantum computers follows the quantum circuit model,
which presents quantum computations as sequences of gates over qubits. As with
classical circuits, quantum circuits exist at a very low level of abstraction, and yet
in spite of this, researchers and industry professionals write complex quantum al-
gorithms in state-of-the-art quantum circuit languages like Quipper (Green et al.,
2013a), Scaffold (Javadi-Abhari et al., 2012) and Liquid (Wecker and Svore, 2014).

Why is the quantum circuit model so successful? It’s partly because circuits, un-
like quantum computation more broadly, are simple and easy to understand. Research
into operations that directly interface with quantum data, like qubit-controlled con-
ditionals and recursion, is still in its infancy (Ying, 2014; Badescu and Panangaden,
2015), so programmers cannot be sure that their algorithms using such abstractions
are quantum-mechanically valid.

Although circuits manipulate quantum data, they themselves are classical data—
a circuit is just a sequence of instructions describing how to apply gates to wires. In
practice, this means that circuits can be used to build up layers of abstractions, hiding
low-level details. The QRAM model of quantum computing (Knill, 1996) formalizes
this intuition by describing how a quantum computer could work in tandem with a
classical computer. In the QRAM model, the classical computer handles the majority
of ordinary tasks, while the quantum computer performs specialized quantum oper-
ations. To communicate, the classical computer sends instructions to the quantum
machine in the form of quantum circuits. Over the course of execution, the quantum
computer sends measurement results back to the classical computer as needed.
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Embedded languages like Quipper, Liquid, the Q language (Bettelli et al., 2003),
and the quantum IO monad (Altenkirch and Green, 2010) can be thought of as
instantiations of this model. They execute by running host language programs on the
classical computer, making specialized calls to the quantum machine. The classical
host languages allow programmers to easily build up high-level abstractions out of
low-level quantum operations.

However, such abstractions are only worthwhile if the circuits they produce are
safe—if they do not cause errors when executed on a quantum computer. Unfor-
tunately, proving that an embedded language produces well-formed circuits is hard
because it means reasoning about the entirety of the classical host language. This is
frustrating when we care most about the correctness of quantum programs, which we
expect to be more expensive and error-prone than the embedded language’s classical
programs.

One way of ensuring the safety of circuits is via a strong type system. Type safety
for a quantum programming language means that well-formed circuits will not get
stuck or “go wrong” when executed on a quantum machine. A subtlety is that this
definition implies that the quantum program is implementable in the first place on a
quantum computer—that the high-level operational view of the language is compat-
ible with quantum physics. One way of ensuring that the language is implementable
is to give a denotational semantics for programs in terms of quantum mechanics.

Several quantum programming languages have been proposed with an emphasis
on type safety, including Selinger’s QPL language (Selinger, 2004a), the quantum
lambda calculus (Selinger and Valiron, 2009), QML (Altenkirch and Grattage, 2005),
and Proto-Quipper (Ross, 2015). However, these are toy languages, not designed for
real-world, scalable quantum programming.

In this chapter we address the tension between expressive embedded languages
and denotationally sound type-safe languages.

4.1.1 The Best of Both Worlds: Qwire
We present a core quantum circuit language in which circuits, equipped with a purely
linear type system to ensure type safety, are explicitly separated from an arbitrary
classical host language. The circuit language, which we call Qwire (“choir”), comes
equipped with an interface to this host language, providing all the benefits of an
embedded language while maintaining type safety and soundness.
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The quantum lambda-calculus (Selinger and Valiron, 2009) popularized the use of
linear types for quantum systems. The “no-cloning” theorem of quantum mechanics
states that quantum data cannot be cloned; in a programming environment, linear
types ensure that quantum programs do not try to violate this property. However, the
programming model should also allow for non-linear programming of ordinary classical
data. The quantum lambda calculus addresses this via subtyping, but for Qwire we
take an alternative approach inspired by the symmetry between the QRAM model
and Benton’s Linear/Non-Linear (LNL) logic (1995), as depicted in the following
diagram:

Non-Linear
Types Linear Types

lower

lift

In Qwire, quantum circuits execute on the quantum computer and are given linear
types, while host language programs execute on the classical computer and are given
ordinary non-linear types.

Structuring the system in this way has several advantages. First, the interface to
circuits is minimal, which means that they can easily be reasoned about. Second, the
host language is extensible, since changes to the host language don’t induce changes
to the circuit language, and vice versa. Third, the relationship between the circuit
language and host language can be axiomatized: every circuit can be promoted to the
host language via a box operator and later unboxed for reuse in other circuits. This
allows circuits to be treated as classical data structures in the host language, while
prohibiting quantum data, such as qubits, from escaping the linear type system.

The axiomatic approach means that the circuit language is relatively independent
from the host language. In particular, the host language can be instantiated with
a wide range of programming languages depending on the intended use: high-level
functional programming languages for developing and reasoning about algorithms;
theorem provers for verification of quantum circuits; and perhaps even hardware de-
scription languages for deployment with real quantum computers. In Chapter 5 and
subsequent chapters, we will focus on one specific host: The Coq proof assistant (Coq
Development Team, 2018) and its programming language, Gallina.

4.1.2 Chapter Outline
• We present Qwire, a core quantum circuit language, along with a simple linear

type system (Section 4.3) and an equational operational semantics (Section 4.4).
In addition to the circuit language itself, we describe a minimal interface to a
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classical host language that allows for modularity and communication via the
QRAM model.

• We prove that the operational semantics of Qwire is type safe (Theorems 5
and 6), and that all circuits reduce to a small set of normal forms (Theorem 7),
depending only on the correctness of the host language.

• We give a denotational semantics in terms of density matrices (Section 4.5) and
prove that the operational semantics is sound with respect to it (Theorem 8).

• Throughout, we give examples of circuits written in an archetypal host language
with access to Qwire (Section 4.2). We also consider how to extend the host
language with case analysis of circuits and dependent types (Section 4.3.2) to
express programs that cannot be written in existing circuit languages.

4.2 Qwire by Example
We start by taking a look at some code written in a host language that has access
to Qwire circuits1. Circuits are constructed by a box operator that binds the input,
represented as a wire name, inside of a circuit. Each wire name is identified with a
wire type, which is either a bit, a qubit, or a (possibly empty) product of wire types.

For example, the identity circuit is written id := box w ⇒ output w and has the
type Box W W for any wire type W. The wire name w in this example is not a regular
variable like one would use in a classical programming language. For one, a wire is
not first class: it is not by itself a circuit. For another, wire variables can only be used
inside a circuit and must be used linearly—once it is used, a wire cannot be used
again.

Gate application is the most important operation on wires. For example, the
following circuit applies a Hadamard gate (H) to its input wire, followed by a mea-
surement gate. Each gate has an associated input and output type and can only be
applied to wires of the appropriate type.

hadamard-measure : Box Qubit Bit :=
box q ⇒

q' ← gate H q;
b ← gate meas q';
output b

H meas

Note that we sometimes write (gate g w) as shorthand for the
(w' <- gate g w; output w') that appears in the example.

1We will use Coq-style syntax for consistency with the rest of the thesis, though Qwire could
be embedded in any number of host languages, depending on the features desired.
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The reason wires must be treated linearly is that applying a gate changes the
nature of the wire w. It is meaningless to apply two gates to the same wire, because
wires (and in particular qubits) cannot be duplicated. The following code, for example,
is absurd:

absurd :=
box w ⇒
x ← gate meas w;
w' ← gate H w;
output (x,w')

Similarly, it is dangerous to implicitly discard references to wires, which might
be entangled in a greater quantum system. In Qwire, the discard gate explicitly
discards a bit-valued wire, whereas qubit-valued wires must be measured before being
discarded.

Since gates act on wires and not circuits, the expression gate meas (gate H w)
is ill-formed. However, circuits can be composed by connecting the output of one
circuit to the input of another. This type of composition is most useful when using
circuits that have previously been constructed by a box operator. Boxed circuits can
be unboxed by connecting some free input wires to the input of the box. The following
function composes two boxed circuits in sequence, resulting in one complete circuit:
inSeq (c1 : Box W1 W2) (c2 : Box W2 W2)
: Box W1 W2 :=
box w1 ⇒
w2 ← unbox c1 w1;
unbox c2 w2

W1 c1
W2 c2

W3

The type system ensures that the output wire of the first circuit matches the
input wire to the second. More complex composition is also possible. For instance,
inPar composes any two circuits in parallel, with no restriction on their wire types.
inPar (c : Box W1 W2) (c' : Box W1' W2')

: Box (W1 ⊗ W1') (W2 ⊗ W2') =
box (w1,w1') ⇒
w2 ← unbox c w1;
w2' ← unbox c' w1';
output (w2,w2')

W1

W ′
1

c

c'

W2

W ′
2

W2 ⊗W ′
2

In the host language, we can write functions that compute circuits based on clas-
sical values, such as the following initialization function for qubits that determines
which initialization gate gets applied.

init (b : Bool) : Box One Qubit :=
if b then box () ⇒ gate init1 ()

else box () ⇒ gate init0 ()
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Definition bell00 :
Box One (Qubit⊗Qubit) :=
box () ⇒
a ← gate init0 ();
b ← gate init0 ();
a ← gate H a;
(a,b) ← gate CNOT (a,b)
output (a,b)

Definition alice :
Box (Qubit⊗Qubit) (Bit⊗Bit) :=
box (q,a) ⇒
(q,a) ← gate CNOT (q,a)
q ← gate H q;
x ← gate meas q;
y ← gate meas a
output (x,y)

Definition bob :
Box (Bit⊗Bit⊗Qubit) Qubit :=
box (x,y,b) ⇒
(y,b) ← gate (bit-ctrl X) (y,b);
(x,b) ← gate (bit-ctrl Z) (x,b);
() ← gate discard y;
() ← gate discard x;
output b

Definition teleport :
Box Qubit Qubit :=
box q ⇒
(a,b) ← unbox bell00 ();
(x,y) ← unbox alice (q,a);
q ← unbox bob (x,y,b);
output q

∣ϕ⟩

0

0 ∣ϕ⟩

bell00

H

alice

H meas

meas

bob

X Z

Figure 4.1: A Qwire implementation of quantum teleportation without dynamic
lifting.
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Quantum Teleportation. The quantum teleportation algorithm of Chapter 2
highlights the relationship between boxed and unboxed circuits. Figure 4.1 shows
the quantum teleportation circuit broken up into four parts. Alice is trying to send
the input qubit q to Bob. The circuit bell00 initializes two qubits in the zero state
(written init0), places qubit a in a superposition of ∣0⟩ and ∣1⟩ via the Hadamard (H)
gate, and entangles it with qubit b by applying a controlled-not (CNOT) gate. Qubit a
is then given to Alice, and qubit b to Bob. Alice entangles a and q and measures
them, outputting a pair of bits x and y. Bob then uses these bits to control an X
and Z gate applied to his own qubit b, thereby placing b in the state of the original
qubit q.

Communication via Lifting. In the teleportation example, the bit-valued wires
x and y are treated as controls in the bob circuit. Intuitively, the bits x and y contain
classical information, and so they should be able to be manipulated by the host
language. The dynamic lifting operation promotes patterns of bits to the host language
so that they can be manipulated using classical reasoning principles.2 The bob circuit
could be written instead using dynamic lifting:

bob-lift : Box (Bit ⊗ Bit ⊗ Qubit) Qubit :=
box (w1,w2,q) ⇒

(x1,x2) ← lift (w1,w2);
q ← unbox (if x2 then boxed_gate X else id) q;
q ← unbox (if x1 then boxed_gate Z else id) q;
output q

where boxed_gate g := box w ⇒ gate g w.
On the one hand, dynamic lifting produces legible code that is easy to understand

because it concentrates more computation in the host language. On the other hand,
dynamic lifting is inefficient because the host language code must be run on a clas-
sical computer, during which time the quantum computer must remain suspended,
waiting for the remainder of the circuit to be computed. Even in the example above,
asking the classical computer to decide whether X or the identity ought to be applied
would be slower than simply applying a controlled-not gate. Though dynamic lifting
is not necessary in the case of quantum teleportation, it is an integral part of many
quantum algorithms, including quantum error correction, and so must be accounted
for coherently.

The examples shown so far describe all of the ways to construct circuits in Qwire.
However, we would also like to have a run operation, which takes a circuit with no
input and produces a value. For example, the following code implements a quantum
coin toss:

2Dynamic lifting can be applied to qubits as well as bits by implicitly measuring the qubits before
producing a host-language value.
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flip : Bool =
run (q ← gate init0 ();

q ← gate H q;
b ← gate meas q;
output b)

∣0⟩ H meas

Note that the Coq implementation of Qwire does not include a run operation,
since Coq programs are not intended to be executed. Moreover, Coq is a pure lan-
guage, and hence cannot handle input and output or probabilistic operations. How-
ever, given that Qwire is host-language agnostic – and even Qwire programs written
in Coq should eventually be executed, either on a QRAM device or through extrac-
tion to OCaml or Haskell (see Section 11.2) – we will discuss run and its semantics
in this chapter.

4.3 The Qwire Circuit Language
We will now introduce the syntax and type theory of Qwire and the interface for
integrating Qwire circuits into a host language.

4.3.1 Circuit Language
As shown above, a circuit can be thought of as a sequence of gates on wires. These
wires can contain a unit (no data), a bit or qubit, or a pair of wires, as described by
the following wire types:

W ∶∶= One ∣ Bit ∣ Qubit ∣W1 ⊗W2

Qwire is parameterized by a collection of gates G, each equipped with input and
output types. We write G(W1,W2) for the set of gates with input W1 and output W2.
The gate set could consist of any collection of gates, but in the setting of quantum
circuits it is conventional to choose a universal subset U ⊆ G of unitary gates such
that, for every u ∈ U(W,W ), we also have

u† ∈ U(W,W )
ctrl u ∈ U(Qubit ⊗W,Qubit ⊗W )

bit-ctrl u ∈ U(Bit ⊗W,Bit ⊗W )

Additionally, we assume we have initialization gates for bits and qubits

new0,new1 ∈ G(One,Bit) init0, init1 ∈ G(One,Qubit)

as well as a measurement gate meas ∈ G(Qubit,Bit) on qubits and a discard gate
discard ∈ G(Bit,One) for bits.
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A typing judgment Γ;Ω ⊢ C ∶W specifies when a circuit is well-formed. In this
judgment,

• C is a circuit;

• Ω = w1 ∶W1, . . . ,wn ∶Wn is a context of input wire names with their wire types;

• Γ = x1 ∶A1, . . . , xn ∶An is a context of host language variables with their host
language types; and

• W is the output type of the circuit.

Thus, all well-typed circuits have the following shape:

C

Ω
W

Wires in Qwire are linear, which means that they cannot be duplicated or dis-
carded (though some gates may duplicate or discard classical bits) and when we write
Ω,Ω′ we assume that Ω and Ω′ contain only disjoint wire names. Both Ω and Γ are
unordered contexts.

The output of a circuit is built up as a pattern of its input wires:
Ω⇒ p ∶W

⋅;Ω ⊢ output p ∶W

Ω
W

A pattern is just a tuple of wires with some wire type:

() ∶ One w ∶W ⇒ w ∶W
Ω1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2

Ω1,Ω2⇒ (p1, p2) ∶W1 ⊗W2

A gate can be applied to a pattern of wires when permitted by the signature of
the gate. The output of that gate is then decomposed by another pattern. The wires
exiting the gate can then be used in the remainder of the circuit.

Ω1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2

g ∈ G(W1,W2) Γ;Ω2,Ω ⊢ C ∶W
Γ;Ω1,Ω ⊢ p2 ← gate g p1 ;C ∶W

C
W

Ω

Ω1
g Ω2

We compose circuits by connecting the output of one circuit to the input wires of
another. This operation differs from sequential composition in that the second circuit
may have additional inputs.

Γ;Ω1 ⊢ C ∶W Γ;Ω0,Ω2 ⊢ C ′ ∶W ′

Γ;Ω1,Ω2 ⊢ p← C;C ′ ∶W ′ C ′
W ′

Ω2

Ω1

C
Ω
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4.3.2 Host Language
In the QRAM model, a classical computer works together with a quantum com-
puter. The classical computer communicates with the quantum computer by sending
it instructions—that is, circuits in Qwire. Terms in the host language, meanwhile,
describe computations on the classical computer. We refer to the host language as
host and describe some of its properties.

We assume that host is statically typed, and we write its types using the meta-
variable A. We further assume that the language has unit, boolean and product types,
to correspond with Qwire’s One, Bit and tensor wire types. We add to host a type
representing Qwire circuits between two wire types, which we write Box W1 W2. Of
course, host will often contain many other types, including functions and inductive
data types, but the interface with Qwire does not depend on the particular structure
of host. For this reason we say that host is arbitrary.

Overall, we can summarize the types of host as follows:

A ∶∶= ⋯ ∣ Unit ∣ Bool ∣ A ×A ∣ Box W1 W2

The typing judgment for host terms is written Γ ⊢ t ∶ A, where Γ is a context of
variables with their associated types.

Boxing and Unboxing. The Box type bridges Qwire circuits and host terms.
The type Box W1 W2 is a wrapper around Qwire circuits of the form Γ;Ω ⊢ C ∶W2,
where the wires in Ω come from a pattern destructing the input type W1.

Ω⇒ p ∶W1 Γ;Ω ⊢ C ∶W2

Γ ⊢ box (p ∶W1)⇒ C ∶ Box W1 W2
C

Ω W

A boxed term of type Box W1 W2 can be turned back into a Qwire circuit by
describing how to match up the available input wires to the input type of the boxed
representation.

Γ ⊢ t ∶ Box W1 W2 Ω⇒ p ∶W1

Γ;Ω ⊢ unbox t p ∶W2
t

Ω W2

Lifting. In the QRAM model described above, the quantum computer also com-
municates with the classical computer by sending it the results of measurement. For
example, given a circuit with no input wires and a bit output, running that circuit
should result in a host language boolean value. (Note that this is probabilistic oper-
ation and hence impure. In a pure language we would require a probability monad M
and run C would have type M B.)

Γ; ⋅ ⊢ C ∶ Bit
Γ ⊢ run C ∶ Bool
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We can generalize this operation so that running a circuit that outputs a qubit im-
plicitly measures that qubit and returns the corresponding boolean. In fact, this
relationship generalizes to any wire type, which can be lifted to a classical type as
follows:

∣Bit∣ = Bool
∣Qubit∣ = Bool

∣One∣ = Unit
∣W1 ⊗W2∣ = ∣W1∣ × ∣W2∣

The run operator now has the following form:

Γ; ⋅ ⊢ C ∶W
Γ ⊢ run C ∶ ∣W ∣

Run is a static lifting operator, meaning that there is no residual state left on the
quantum computer after run C has completed. In contrast, dynamic lifting describes
the case when, over the course of a quantum computation, a subset of the wires
are measured and communicated to the classical computer. In this case, the classical
computer uses those results to compute the remainder of the quantum circuit, and
eventually sends the results to the quantum computer. Dynamic lifting is expensive
because while the classical computer is computing the rest of the circuit, the exist-
ing state on the quantum computer must continuously undergo error correction to
prevent degradation. However, dynamic lifting is a fundamental form of communica-
tion between the two machines, needed to implement algorithms like quantum error
correction.

We write the dynamic lifting operator x ⇐ lift p;C to mean that the wires in p are
measured, lifted to the classical computer as the host variable x , and used to compute
the circuit C.

Ω⇒ p ∶W Γ, x ∶ ∣W ∣;Ω′ ⊢ C ∶W ′

Γ;Ω,Ω′ ⊢ x⇐ lift p;C ∶W ′

The dynamic and static lifting operations are not mutually derivable, as they rep-
resent two fundamentally different ways to communicate the results of measurement
between the two systems.

4.3.3 Static Semantics
To summarize, the syntax of Qwire circuits and host terms include the following:

(Patterns) p ∶∶= () ∣ w ∣ (p,p)
(Circuits) C ∶∶= output p ∣ p2 ← gate g p1;C ∣ p← C;C ∣ x ⇐ lift p;C ∣ unbox t p
(Terms) t ∶∶= ⋯ ∣ run C ∣ box (p ∶W )⇒ C

The typing rules are summarized in Figure 4.2. Note that we often write box p⇒ C
instead of box (p ∶W ) ⇒ C when the type of the input pattern is clear. Note that
typing contexts are unique for both patterns and circuits:
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Ω⇒ p ∶W
Γ;Ω ⊢ output p ∶W

TypeCircOutput

Ω1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2

g ∈ G(W1,W2) Γ;Ω2,Ω ⊢ C ∶W
Γ;Ω1,Ω ⊢ p2 ← gate g p1 ;C ∶W

TypeCircGate

Γ;Ω1 ⊢ C ∶W Γ;Ω0,Ω2 ⊢ C ′ ∶W ′

Γ;Ω1,Ω2 ⊢ p← C;C ′ ∶W ′ TypeCircLet

Ω⇒ p ∶W Γ, x ∶ ∣W ∣;Ω′ ⊢ C ∶W ′

Γ;Ω,Ω′ ⊢ x⇐ lift p;C ∶W ′ TypeCircLift

Γ ⊢ t ∶ Box W1 W2 Ω⇒ p ∶W1

Γ;Ω ⊢ unbox t p ∶W2

TypeCircUnbox

Γ; ⋅ ⊢ C ∶W
Γ ⊢ run C ∶ ∣W ∣

TypeRun

Ω⇒ p ∶W1 Γ;Ω ⊢ C ∶W2

Γ ⊢ box (p ∶W1)⇒ C ∶ Box W1 W2

TypeBox

Figure 4.2: Typing rules for Qwire.

45



Lemma 1. If Ω1 ⇒ p ∶ W and Ω2 ⇒ p ∶ W then Ω1 = Ω2. If Γ;Ω1 ⊢ C ∶ W and
Γ;Ω2 ⊢ C ∶W then Ω1 = Ω2.

4.4 Operational Semantics: Circuit Normalization
Circuits in Qwire represent instructions to be executed on a quantum computer:
either apply a particular gate or request a dynamic lifting operation. Composition
and unbox operations are more like meta-operations: they describe ways to construct
complex combinations of gates. In this section we define an operational semantics
that eliminates all instances of unboxing and composition, resulting in a small set of
normal forms. A Qwire circuit in normal form is identified by two main properties.

First, normal circuits should operate only on bits and qubits, not on the tuples of
wires described by arbitrary wire types W . We call a circuit concrete when all of its
input wires are either bits or qubits:

⋅;Q ⊢ C ∶W where Q ∶∶= ⋅ ∣ Q,w ∶Bit ∣ Q,w ∶Qubit.

A concrete circuit is called normal when it consists only of gate applications,
outputs, and dynamic lifting operations.

N ∶∶= output p ∣ p2 ← gate g p1;N ∣ x ⇐ lift p;C

Notice that the lifting operator x ⇐ lift p;C does not assume that its continuation
C is also normal. This is because C has a free host-level variable x that cannot in
general be normalized. For example, consider the circuit x ⇐ lift w ;unbox ( init x) ():
the continuation unbox ( init x) () cannot be normalized to init0 or init1 since x is
not assigned a value until circuit execution time.

In the rest of this section, we define a small-step operational semantics that reduces
concrete circuits typed by ⋅;Q ⊢ C ∶W to normal circuits. The operational rules rely
on a fairly complex substitution relation, which we briefly address.

Substitution. A substitution {p′/p} describes a finite map from wire names to
patterns. It is well defined only when p generalizes p′ (written p′ ≼ p) in the following
sense:

p′ ≼ w () ≼ ()
p′1 ≼ p1 p′2 ≼ p2
(p′1, p′2) ≼ (p1, p1)

We say p′ ≺ p when p′ ≼ p and ¬(p ≼ p′), and we say p is concrete for W when, for all
Ω⇒ p′ ∶W , ¬(p′ ≺ p).

Lemma 2. If Ω⇒ p ∶W and Q⇒ p′ ∶W , then p′ ≼ p.
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The substitution map is defined as follows:

{()/()} = ∅
{p′/w} = w ↦ p′

{(p′1,p′2)/(p1,p2)} = {p′1/p1},{p′2/p2}

A well-defined substitution extends to total functions on patterns, circuits, and
wire contexts. For patterns, we have:

(){p′/p} = ()

w{p′/p} =
⎧⎪⎪⎨⎪⎪⎩

p0 if w ↦ p0 ∈ {p′/p}
w otherwise

(p1,p2){p′/p} = (p1{p′/p},p2{p′/p})

The operation on circuits is straightforward, assuming the standard notions of
capture-avoidance.

(output p0) {p′/p} = output (p0{p′/p})
(p2 ← gate g p1;C) {p′/p} = p2 ← gate g p1{p′/p};C {p′/p}
(x ⇐ lift p0;C) {p′/p} = x ⇐ lift p0{p′/p};C {p′/p}
(unbox t p0) {p′/p} = unbox t (p0{p′/p})
(p0 ← C;C ′) {p′/p} = p0 ← C {p′/p};C ′ {p′/p}

A well-defined substitution {p′/p} is consistent with w at W if (w ↦ p0) ∈ {p′/p}
implies that there is some unique3 Ω0 such that Ω0 ⇒ p0 ∶ W . A substitution is
consistent with a context Ω when, for all w ∶W ∈ Ω, it is consistent with w at W .

For wire contexts, suppose {p′/p} is consistent with Ω. The substitution Ω{p′/p}
is defined by induction on Ω:

⋅{p′/p} = ⋅

(Ω′,w ∶W ) {p′/p} =
⎧⎪⎪⎨⎪⎪⎩

Ω′ {p′/p},Ω0 if w ↦ p0 ∈ {p′/p}and Ω0⇒ p0 ∶W
Ω′ {p′/p},w ∶W otherwise

Lemma 3. Suppose p′ ≼ p where Ω⇒ p ∶W and Ω′⇒ p′ ∶W . Then:

1. If Ω′′ is disjoint from Ω, then Ω′′ {p′/p} = Ω′′.

2. Ω{p′/p} = Ω′.

3. (Ω1,Ω2) {p′/p} = Ω1 {p′/p},Ω2 {p′/p}.
3Recall that Ω0 is uniquely determined by the choice of p0 and W (Lemma 1).
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Lemma 4. Suppose {p′/p} is consistent with Ω.

1. If Ω⇒ p0 ∶W then Ω{p′/p}⇒ p0{p′/p} ∶W .

2. If Γ;Ω ⊢ C ∶W then Γ;Ω{p′/p} ⊢ C {p′/p} ∶W ′.

Proof. Part 1 is straightforward by induction. Part 2 is similarly by induction on the
typing judgment Γ;Ω ⊢ C ∶W . The only difficult case concerns the bound patterns in
gate and composition substitutions. For example, consider the gate application rule:

Ω1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2 g ∈ G(W1,W2) ⋅;Ω2,Ω ⊢ C ∶W
⋅;Ω1,Ω ⊢ p2 ← gate g p1 ;C ∶W

By part 1, we have Ω1 {p′/p} ⇒ p1{p′/p} ∶W1, and by the inductive hypothesis we
know Γ;(Ω2,Ω) {p′/p} ⊢ C {p′/p} ∶W . By α-equivalence, we can assume that the wires
in Ω2 are disjoint from those in p′ and p (and therefore from the substitution {p′/p}),
and so by Lemma 3, (Ω2,Ω) {p′/p} = Ω2,(Ω{p′/p}). Thus

Γ;Ω1 {p′/p},Ω{p′/p} ⊢ p2 ← gate g p1{p′/p};C {p′/p} ∶W.

Operational Semantics. The small-step operational semantics for circuits is writ-
ten C Ô⇒ C ′, and it depends on a similar operational semantics on terms, written
tÐ→ t′. The relation on terms is made up of two parts, Ð→=Ð→H ∪Ð→b, where

1. Ð→H is the operational semantics derived from the host language alone, and

2. Ð→b is the operational semantics for boxed circuits.

It is reasonable to assume that the host language relation Ð→H treats the type Box W1

W2 as an abstract data type, meaning that all terms of the form box p⇒ C are treated
as opaque values by the Ð→H relation. The relation Ð→b reduces such a boxed circuit
to one of the form box p′ ⇒ N where p′ is concrete for the type W1. Let vh consists
of values of host extended with boxed circuits as opaque values, and vc consists of
host’s values along with normalized boxed circuits:

vh ∶∶= . . . ∣ box p⇒ C

vc ∶∶= . . . ∣ box p⇒ N

We explicitly do not describe the operational behavior of run C terms in this
semantics. Instead, we assume that run operations reduce under Ð→H: The host
language can execute or simulate quantum circuits. The semantics of run is distinct
from the construction of circuits, which is what we are developing in this section. A
candidate semantics for circuit evaluation is given in Section 4.5.1, where we provide
of a probabilistic operational rule for run C based on the denotational semantics of
circuits.
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(Box)
p is concrete for W C Ô⇒ C ′

box (p ∶W )⇒ C Ð→b box (p ∶W )⇒ C ′
StepTermBoxStructural

p′ ≺ p p′ is concrete for W
box (p ∶W )⇒ C Ð→b box (p′ ∶W )⇒ C {p′/p}

StepTermBoxEta

(Unbox)
t Ð→ t ′

unbox t p Ô⇒ unbox t ′ p
StepCircUnboxStructural

unbox (box (p ∶W )⇒ N ) p′ Ô⇒ N {p′/p}
StepCircUnbox

(Gate)
g ∈ G(W1,W2) p2 is concrete for W2 C Ô⇒ C ′

p2 ← gate g p1;C Ô⇒ p2 ← gate g p1;C ′
StepCircGateStructural

g ∈ G(W1,W2) p′2 ≺ p2 p′2 is concrete for W2

p2 ← gate g p1;C Ô⇒ p′2 ← gate g p1;C {p′2/p2}
StepCircGateEta

(Composition)
C1 Ô⇒ C ′1

p ← C1;C2 Ô⇒ p ← C ′1;C2
StepCircLetStructural

p ← output p′;C Ô⇒ C {p′/p}
StepCircLetOutput

p ← (p2 ← gate g p1;N );C Ô⇒ p2 ← gate g p1;p ← N ;C
StepCircLetGate

p′ ← (x ⇐ lift p;C ′);C Ô⇒ x ⇐ lift p;p′ ← C ′;C
StepCircLetMeas

Figure 4.3: Operational semantics of concrete circuits.
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The relations Ô⇒ on circuits and Ð→b on boxed circuits are given in Figure 4.3.
The structural rules reduce circuits underneath binders. For composition and un-
boxing, these structural rules are straightforward, in that they don’t have any pre-
conditions restricting when they apply. For boxes and gates, on the other hand, the
continuations C of the circuit have some additional inputs that are not concrete even
if the entire circuit is. For example, in the circuit w ← gate CNOT (w1 ,w2 );C, the
continuation C has a compound wire w even though the entire circuit has only con-
crete wires w1 and w2 . To address this issue, the η-expansion rules for gates and boxes
show that any such binding is equivalent to one with concrete inputs throughout.

Lemma 5. If p is concrete for W then there is a unique Q such that Q ⇒ p ∶W .
Furthermore, for every wire type W there exists p (not necessarily unique) such that
p is concrete for W .

Since an unbox operator is not a normal circuit, we eliminate it via a β rule once
its argument t reaches a value of the form box p ⇒ N . Similarly, the composition
operator reduces its first argument to a normal form before taking a step. When the
argument is an output output p′, the composition p ← output p′;C uses substitution
to take a β-reduction step. On the other hand, when the argument consists of a gate
or lifting step, the semantics commutes that command to the front of the circuit; we
call these operators commuting conversions.

4.4.1 Type Safety
We prove type safety with progress and preservation theorems, provided that the
relation Ð→H is also type safe.

Theorem 5 (Preservation). Suppose Ð→H satisfies preservation.

1. If ⊢ t ∶A and tÐ→ t′, then ⊢ t′ ∶A.

2. If ⋅;Q ⊢ C ∶W and C Ô⇒ C ′, then ⋅;Q ⊢ C ′ ∶W .

Proof. By induction on the step relation (Appendix B.1).

Theorem 6 (Progress). Suppose Ð→H satisfies progress with respect to the values vh.

1. If ⋅ ⊢ t ∶A then either t is a value vc or there is some t′ such that tÐ→ t′.

2. If ⋅;Q ⊢ C ∶W then either C is normal or there is some C ′ such that C Ô⇒ C ′.

Proof. By induction on the typing judgment (Appendix B.1).

Provided that Ð→H is strongly normalizing, we can also show that circuits are
strongly normalizing.

Theorem 7 (Normalization). Suppose that Ð→H is strongly normalizing with respect
to vh.
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1. If ⋅ ⊢ t ∶A, there exists some value vc such that tÐ→∗ vc.

2. If ⋅;Q ⊢ C ∶W , there exists some normal circuit N such that C Ô⇒∗ N .

Proof. By induction on the number of constructors in the term and circuit (Ap-
pendix B.1).

4.5 Denotational Semantics
In this section we give a denotational semantics for Qwire circuits. The state of a
quantum system can be described in terms of the density matrices of Section 2.5. For
example, consider the entangled Bell pair produced by the following circuit:

0

0

H

This pair of qubits is represented by the (pure state) density matrix

⎛
⎜⎜⎜
⎝

1/2 0 0 1/2
0 0 0 0
0 0 0 0
1/2 0 0 1/2

⎞
⎟⎟⎟
⎠

where the 1/2 in the top left represents the probability of measuring two zeros, while
the 1/2 in the bottom right represents the probability of measuring two ones. If we
measured this system, we would obtain the (mixed state) matrix

⎛
⎜⎜⎜
⎝

1/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/2

⎞
⎟⎟⎟
⎠

representing a distribution over ∣00⟩ and ∣11⟩.
Since a Qwire circuit transforms some state to another, it will be interpreted as

a superoperator over density matrices (a function on density matrices that preserves
mixed states).

To begin, we define the denotation of a k-(qu)bit wire type as the corresponding
set of 2k × 2k matrices:

JBitK = C2,2JQubitK = C2,2

JOneK = C1,1JW1 ⊗W2K = JW1K⊗ JW2K
In practice, inhabitants of JOneK will be restricted to the 1 × 1 identity matrix

and inhabitants of JW K will all be density matrices. With this, we can treat a gate
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g ∈ G(W1,W2) as a superoperator from JW1K to JW2K. Although the set of gates is a
parameter of the system, the denotation of a unitary gate U applied to a matrix ρ
should always be UρU †. The interpretation of other likely gates is as follows:

Jnew0K(c) = Jinit0K(c) = c ∣0⟩ ⟨0∣Jnew1K(c) = Jinit1K(c) = c ∣1⟩ ⟨1∣JdiscardKρ = ⟨0∣ρ ∣0⟩ + ⟨1∣ρ ∣1⟩JmeasKρ = ∣0⟩ ⟨0∣ρ ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣ρ ∣1⟩ ⟨1∣
Qwire circuits are specified by an unordered context of input wires Ω. How-

ever, we can equally well think of Ω as an ordered context, along with an explicit
permutation rule to change the order of the wires.4

Γ;Ω′ ⊢ C ∶W π ∶ Ω ≡ Ω′

Γ;Ω′ ⊢ C ∶W

Permutations are defined inductively.

ϵ ∶ Ω ≡ Ω swap Ω1 Ω2 ∶ Ω,Ω1,Ω2,Ω
′ ≡ Ω,Ω2,Ω1,Ω

′
π1 ∶ Ω1 ≡ Ω2 π2 ∶ Ω2 ≡ Ω3

π2 ○ π1 ∶ Ω1 ≡ Ω3

Note that permutations are reflected in the typing judgments of circuits but not in
the syntax. We extend the substitution relation to permutations in a natural way,
writing π {p′/p}.

ϵ{p′/p} = ϵ
(π2 ○ π1) {p′/p} = π2 {p′/p} ○ π1 {p′/p}

(swap Ω1 Ω2) {p′/p} = swap (Ω1 {p′/p}) (Ω2 {p′/p})

An ordered context of wires is now interpreted as a space of matrices by treating
the comma as the tensor product:

J⋅K = C1,1 Jw ∶W K = JW K JΩ1,Ω2K = JΩ1K⊗ JΩ2K
Although the context of wires can be permuted inside a circuit, it will not be

permuted inside a pattern. Therefore, a pattern Ω ⇒ p ∶W is just a reassociation of
the input wires; all permutations must be done outside the pattern. This means that
whenever Ω⇒ p ∶W , it must be the case that JΩK = JW K.

A permutation π ∶ Ω ≡ Ω′ will be interpreted as a linear isomorphism from JΩK to
4We elided these details in Section 4.3 as they complicate the operational semantics.
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Ω⇒ p ∶W
⋅;Ω ⊢ output p ∶W

J⋅;Ω ⊢ output p ∶W K = I∗
⋅;Ω ⊢ C ∶W π ∶ Ω ≡ Ω′

⋅;Ω ⊢ C ∶W
JΩ ⊢ C ∶W K = JΩ′ ⊢ C ∶W K ○ [π]∗

⋅ ⊢ t ∶ Circ(W1,W2) Ω⇒ p ∶W1

⋅;Ω ⊢ unbox t p ∶W2
JΩ ⊢ unbox t p ∶W ′K = Jt ∶ Circ(W,W ′)K

g ∈ G(W1,W2) Ω1 ⇒ p1 ∶W1

Ω2 ⇒ p2 ∶W2 ⋅;Ω2,Ω ⊢ C ∶W
⋅;Ω1,Ω ⊢ p2 ← gate g p1 ;C ∶W

JΩ1,Ω ⊢ p2 ← gate g p1;C ∶W K
=JΩ2,Ω ⊢ C ∶W K ○ (JgK ⊗ I∗)

Ω⇒ p ∶W x ∶ ∣W ∣;Ω′ ⊢ C ∶W ′

⋅;Ω,Ω′ ⊢ x⇐ lift p;C ∶W ′

JΩ,Ω′ ⊢ x⇐ lift p;C ∶W ′K
= ∑
⋅⊢v∶∣W ∣

JΩ′ ⊢ C{v/x} ∶W ′K ○ ([v ∶ ∣W ∣]† ⊗ I)∗

⋅;Ω1 ⊢ C ∶W ⋅;Ω0,Ω2 ⊢ C ′ ∶W ′

⋅;Ω1,Ω2 ⊢ p← C;C ′ ∶W ′
JΩ1,Ω2 ⊢ p← C;C ′ ∶W ′K
=JΩ0,Ω2 ⊢ C ′ ∶W ′K ○ (JΩ1 ⊢ C ∶W K ⊗ I∗)

Figure 4.4: Denotational semantics of circuits.

JΩ′K, written JπK, as follows:
JϵK = I Jπ2 ○ π1K = Jπ2K ○ Jπ1KJswap Ω1 Ω2K(v0 ⊗ v1 ⊗ v2 ⊗ v3) = (v0 ⊗ v2 ⊗ v1 ⊗ v3)

Lemma 6. If π ∶ Ω ≡ Ω′ and {p′/p} is consistent with Ω, then Jπ{p′/p}K = JπK.
Proof. Straightforward by induction on the permutation.

For ⋅;Ω ⊢ C ∶W , we write JΩ ⊢ C ∶ W K for its interpretation as a superoperator
between JΩK and JW K. Furthermore, for ⋅ ⊢ t ∶BoxW1 W2, we write JtK for JΩ ⊢ C ∶W2K
where t Ð→∗H box p ⇒ C in the host language and Ω ⇒ p ∶W1. This operation is
functional exactly when the host language semantics is strongly normalizing.

The interpretation of circuits is defined in Figure 4.4.

Lemma 7. If ⋅;Ω ⊢ C ∶W and {p′/p0} is consistent with Ω, then

JΩ{p′/p} ⊢ C {p′/p} ∶W K = JΩ ⊢ C ∶W K.
Proof. By induction on the typing judgment. The proof is almost completely straight-
forward because the interpretation of circuits does not depend on the content of
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patterns.

Theorem 8 (Soundness). If ⋅;Q ⊢ C ∶W and C Ô⇒ C ′, then

JQ ⊢ C ∶W K = JQ ⊢ C ′ ∶W K.
Proof. By induction on the typing judgment (Appendix B.2).

4.5.1 Operational Behavior of run
In Section 4.4, we left the semantics of the run operator up to the the host language
and corresponding quantum device or simulator. Given the denotational semantics
described in this section, however, we can specify the correctness of run C as a prob-
abilistic operation.

First, we will need to define a lifting from select host level terms (the constructors
of Unit, Bool and A × A) to basis states that follows naturally from our lifted wire
types (Section 4.3.2):

⌈∗⌉ = I1
⌈false⌉ = ∣0⟩ ⟨0∣
⌈true⌉ = ∣1⟩ ⟨1∣

⌈(v1, v2)⌉ = ⌈v1⌉⊗ ⌈v2⌉

Now, if ⋅; ⋅ ⊢ C ∶W , then J⋅ ⊢ C ∶W KI1
is a density matrix in JW K. We can write this density matrix as

⎛
⎜
⎝

α11 ⋯ α1n

⋮ ⋱ ⋮
αn1 ⋯ αnn

⎞
⎟
⎠

Recall that the elements αii along the diagonal correspond to basis states, and there-
fore to terms vi in the host language (via lowering). Hence, for each i, we say that the
probability of C being vi is αi i , written prob(C =vi) = αi i . The operational semantics
rule for run C can be summarized with respect to this relation: run C steps to vi with
probability αi i .

prob(C = vi) = αii

run C Ð→αii vi

4.6 A Categorical Semantics for Qwire
In “Classical Control and Quantum Circuits in Enriched Category Theory,” Rennela
and Staton (2017) provide a categorical semantics for EWire, which slightly general-

54



izes Qwire. EWire is shown to be an enriched category in which the morphisms of
one category become objects in another. In context, we can view a circuit as a func-
tion (morphism) from wires types to wire types, but we also treat circuits as terms
(objects) in the host language. As a result, we can impose a layered categorical struc-
ture on Qwire: Circuits correspond to an an enriched symmetric monoidal category
and the host language corresponds to Cartesian closed category with the run monad
connecting the two.

This categorical framework allows the authors to consider adding features to
Qwire, such as recursion, which is modeled using directed complete partial orders
(DCPOs). This builds on previous work by Rennela (2014) that uses W ∗-algebras
to model quantum computation. Further work by Lindenhovius et al. (2018) builds
upon this semantics in the contexts of the Proto-Quipper language (Ross, 2015; Rios
and Selinger, 2017).

4.7 Dependent Types
One powerful feature that we might request from the host language is support for
dependent types. Consider the quantum Fourier transform, which is a circuit with n
inputs and n outputs. It is natural for the wire types of the Fourier circuit to reflect
this dependency on n. In the language of dependent types, it might have the signature

fourier : Π(n:N). Box (n ⊗ Qubit) (n ⊗ Qubit)

where tensor (⊗) is a type-level function that duplicates the argument wire type
(Qubit) some number of times (defined below).

Combining linear and dependent types is still an area of active research (Krish-
naswami et al., 2015; McBride, 2016), but thanks to the separation between the circuit
and host languages, we can get away with a limited form of dependent types due to
Krishnaswami et al. (2015). Under this strategy, types can depend on terms, but
only terms of classical (non-linear) type. These include dependencies on wire types
themselves.

To be precise, let W be the kind of wire types, and consider an indexed hierarchy
of host language types Ai . We define the following well-formedness judgment: first,
W has type Ai for any index i , and Ai has type Ai+1:

Γ ⊢W ∶ Ai Γ ⊢ Ai ∶ Ai+1

In addition, we introduce a new host-language type Π (x ∶ A).B with the following
well-formedness condition:

Γ ⊢W ∶ Ai Γ, x ∶ A ⊢ B ∶ Ai

Γ ⊢ Π(x ∶ A).B ∶ Ai
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Π types have the usual introduction and elimination rules:

Γ, x ∶ A1 ⊢ t ∶ A2

Γ ⊢ λx.t ∶ Π(x ∶ A1).A2

Γ ⊢ t ∶ Π(x ∶ A1).A2 Γ ⊢ t′ ∶ A1

Γ ⊢ t t′ ∶ A2{t′/x}

A more thorough analysis of this type structure is needed, but it is beyond the
scope of this chapter.

A Dependent Quantum Fourier Transform. Under this framework, we can
start with the type-level function tensor, a recursive function which pattern matches
on a natural number n:
tensor (n : N) (W : WType) : WType :=

match n with
| 0 ⇒ One
| 1 ⇒ W
| 1 + n' ⇒ W ⊗ tensor n' W
end

We write n ⊗ W for tensor n W .
Next, we use these length-indexed tuples to write a dependently-typed quantum

Fourier transform in the style of Green et al. (2013b). Our version of the Fourier
circuit ensures that the number of qubits in the input and output are always the
same.

First, we define the rotation circuits. We assume the presence of a family of gates
RGate m that rotates its input along the z-axis by 2πi

2m (Green et al., 2013b). The
rotations circuit takes two natural number inputs: m, the argument given to the
controlled R gates; and n, the number of bits in the input.
rotations (m:N) : Π(n:N). Box ((n+1) ⊗ Qubit) ((n+1) ⊗ Qubit) :=

fun n ⇒ match n with
| 0 ⇒ id
| 1 ⇒ id
| 1 + n' ⇒ box (c,(q,qs)) ⇒

(c,qs) ← unbox rotations m n' (c,qs);
(c,q) ← gate (control (RGate (2+m-n')))(c,q);
output (c,(q,w))

end

The quantum Fourier transform can now be defined in a type-safe way:
qft : Π(n:N). Box (n ⊗ Qubit) (n ⊗ Qubit) :=

fun n ⇒
match n with
| 0 ⇒ id
| 1 ⇒ hadamard
| 1 + n' ⇒ box (q,w) ⇒
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w ← unbox qft n' w;
unbox rotations (S n') n' (q,w)

end

where hadamard = box w => gate H w.

4.8 Summary
Qwire is a minimal and highly modular core circuit language. It is minimal in
that Qwire has only five distinct commands, two of which are eliminated in the
normalization procedure. It is modular in that Qwire isn’t attached to any spe-
cific programming language. We expect that the Qwire interface will be useful in
dependently-typed host languages like Coq for verification and formal analysis of cir-
cuits, in higher-order functional languages like Haskell, OCaml or F#, or potentially
even in imperative languages like Python, Java, or C.
Qwire uses linear types to enforce no-cloning, but it does not allow them to spill

over into the host language. This is crucial because linear types are the most natural
way to enforce no-cloning, but they are difficult to integrate into existing languages.
Qwire gets the best of both worlds by ensuring that circuits are linearly typed while
allowing an arbitrarily powerful type system in the classical host language.

As a circuit description language, Qwire is a low-level piece in the development
of sophisticated quantum programming languages. Ultimately however, all quantum
computation will boil down to circuit generation, necessitating the use of a circuit
language like Qwire. Having Qwire as a safe, small circuit language is an excellent
building block on which to rest the complex world of quantum computation.

In the following chapters, we will focus on a particular implementation of Qwire
inside the Coq proof assistant and what we gain from this embedding, in terms of
dependently typed structures and a formally verified metatheory.
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Chapter 5

Qwire in Practice

This chapter discusses the implementation of Qwire inside the Coq proof assis-
tant (Coq Development Team, 2018). Coq consists of both a programming language,
called Gallina, and an interactive system for proving properties of Gallina programs.
Gallina features dependent types, which may depend on both terms and other types
from the language. For instance, we can define the type Sized_List 7 B, for lists of
length 7 that contain boolean values. Gallina is also restrictive in that all Gallina
programs must terminate, and hence only restricted forms of recursion are permitted.
While the Coq proof language may appear to be separate from Gallina, it actually
constructs dependently typed Gallina terms, which correspond to proofs of desired
properties. Coq also includes an untyped programming language, called Ltac, which
is used to construct Coq proofs. We assume some familiarity with Coq in this disser-
tation, and refer the interested reader to the online textbook / Coq library “Software
Foundations” (Pierce et al., 2018) or our Coq tutorial with Arthur Azevedo de Amorim
(Rand and de Amorim, 2016).

Implementing Qwire forced us to confront issues like variable representation,
compilation of circuits to functions on density matrices, and implementing matrices
and complex numbers in Coq. This chapter draws on Rand et al. (2017) along with a
CoqPL workshop presentation on phantom types for quantum programs (Rand et al.,
2018b).

5.1 Circuits in Coq
Wires and Gates As we saw in the previous chapter, at its core a Qwire circuit
is a sequence of gates applied to wires. Each wire is described by a wire type W, which
is either the unit type (no data), a bit or qubit, or a tuple of wire types. In Coq we
represent wire types as an inductively defined data type WType as follows:
Inductive WType := One | Bit | Qubit | Tensor : WType → WType → WType.

We use the Coq notation ``W1 ⊗ W2'' for Tensor W1 W2.
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Wires in a circuit can be collected into patterns corresponding to a given wire
type, written Pat W. A pattern is just a nested tuple of wires of base types, meaning
that all the variables in a pattern have type Bit or Qubit.
Inductive Pat : WType → Set :=
| unit : Pat One
| qubit : Var → Pat Qubit
| bit : Var → Pat Bit
| pair : ∀ {W1 W2}, Pat W1 → Pat W2 → Pat (W1 ⊗ W2).

The type Var is identical to N. We use the notation () to refer to the unit pattern and
(p1,p2) to refer to pair p1 p2. Note that the wire types corresponding to unit, qubit
and bit are fixed; the type of a pair can therefore be inferred from the patterns it
contains.

Gates are indexed by a pair of wire types—a gate of type Gate W1 W2 takes an
input wire of type W1 and outputs a wire of type W2. In our setting, gates will include
a universal set of unitary gates, as well as initialization, measurement, and control.
Inductive Unitary : WType → Set :=

| H : Unitary Qubit (* Hadamard *)
| X : Unitary Qubit (* Pauli X *)
| Y : Unitary Qubit (* Pauli Y *)
| Z : Unitary Qubit (* Pauli Z *)
| control : ∀ {W} (U : Unitary W), Unitary (Qubit ⊗ W).

Inductive Gate : WType → WType → Set :=
| U : ∀ {W} (u : Unitary W), Gate W W
| new0 : Gate One Bit
| init0 : Gate One Qubit
| meas : Gate Qubit Bit
| discard : Gate Bit One.

We define U to be a coercion from unitaries to gates, meaning that for any u of
type Unitary W, we can simply write u for the gate U u.

Circuits In constructing our circuits, we represent variable using higher-order ab-
stract syntax (HOAS) (Pfenning and Elliott, 1988), in which variable bindings in an
embedded language are represented as functions in the host language. This saves us
from having to define and prove the correctness of our own substitution function and
gives variables in the embedded language the same weight as variables in the host
language.

There are only three syntactic forms for circuits: output, gate application, and
dynamic lifting.
Inductive Circuit (W : WType) : Set :=
| output : Pat W → Circuit W
| gate : ∀ {W1 W2},
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Gate W1 W2 → Pat W1 → (Pat W2 → Circuit W) → Circuit W
| lift : Pat Bit → (B → Circuit W) → Circuit W.

An output circuit output p is just a pattern whose wire type uniquely determines
the wire type of the circuit. A gate application, which we write using the notation
gate p2 ← g @p1; c, is made up of a gate g : Gate W1 W2, an input pattern p1 : Pat W1,
and a continuation c : Pat W2 → Circuit W. The intended meaning is that p1 is the
input to the gate g, and its output is bound to p2 in the continuation.

The lift operation, which we write as lift x ← p; C, takes as input a bit wire
p : Pat Bit and a function fun x ⇒ C that takes a bool and returns a circuit. The
intended semantics is that the QRAM will transmit the value of p as a Coq boolean
to the classical computer, which will then compute the remainder of the circuit. We
use notations to define lifting on qubits (which is equal to a measurement followed
by lift) and patterns of bits and qubits (see Section 5.6).

A boxed circuit is simply a function from an input pattern to a circuit:
Inductive Box w1 w2 : Set :=
| box : (Pat w1 → Circuit w2) → Box w1 w2.

The corresponding unbox function takes a boxed circuit and a input pattern and
returns a Circuit:
Definition unbox {w1 w2} (b : Box w1 w2) (p : Pat w1) : Circuit w2 :=

match b with box c ⇒ c p end.

Our higher-order abstract syntax also allows us to easily define composition, where
Coq performs variables substitution for us:
Fixpoint compose {w1 w2} (c : Circuit w1) (f : Pat w1 → Circuit w2) :

Circuit w2 :=
match c with
| output p ⇒ f p
| gate g p c' ⇒ gate g p (fun p' ⇒ compose (c' p') f)
| lift p c' ⇒ lift p (fun bs ⇒ compose (c' bs) f)
end.

5.2 Typing Qwire
The previous section should give the reader a feel for the contours of Qwire’s type
system. Every pattern, gate and circuit is associated with a given wire type and Coq’s
typechecker ensures that all the wires types are consistent for a given circuit.

However, there’s more to the story. Qwire programs are linearly typed, meaning
that every wire must be used exactly once. Additionally, Qwire patterns and circuits
are extrinsically typed, meaning that we construct circuits and then prove that they
type-check using Coq lemmas. This stands in contrast to an earlier presentation of
Qwire (Rand et al., 2017), in which typing contexts were embedded inside patterns
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and circuits. Our prior approach had the advantage of making it impossible to con-
struct ill-typed circuits, but also made Qwire circuits quite bulky and difficult to
compute with. We can regain the safety features of that version of Qwire by only
exposing typed circuits – sigma types consisting of circuits with their typing proofs –
to the user.

Typing Contexts A typing context Γ of type Ctx is a partial map from variables
(represented concretely as natural numbers) to wire types. We implement contexts
as lists of option WTypes. In this representation, the variable i is mapped to W if the
ith element in the list is Some W, and is undefined if the list has no ith element or that
element is None.

The disjoint merge (⋓) operation ensures that the same wire cannot occur twice
in one circuit. Mathematically, it is defined on two typing contexts as follows:
[] ⋓ Γ2 = Γ2
Γ1 ⋓ [] = Γ1
None :: Γ1 ⋓ None :: Γ2 = None :: (Γ1 ⋓ Γ2)
Some W :: Γ1 ⋓ None :: Γ2 = Some W :: (Γ1 ⋓ Γ2)
None :: Γ1 ⋓ Some W :: Γ2 = Some W :: (Γ1 ⋓ Γ2)

Since disjoint merge is a partial function, we represent it in Coq as a function on
possibly invalid contexts, OCtx = Invalid | Valid Ctx. For convenience, most opera-
tions on contexts are lifted to work with OCtx values, and so the type signature of
merge is OCtx → OCtx → OCtx. For convenience, we use the notation Γ == Γ1 ● Γ2 for
Γ = Γ1 ⋓ Γ2 ∧ is_valid Γ, where is_valid asserts validity.
Definition is_valid (Γ : OCtx) : P := ∃ (Γ' : Ctx), Γ = Valid Γ'.

For proofs about contexts, we also provide an inductive relation merge_ind and prove
that merge_ind Γ1 Γ2 Γ if and only if Γ == Γ1 ● Γ2. This inductive relation makes it
easier to reason about merged typing contexts, though (unlike ⋓) we can no longer
compute with it or use it for rewriting.

Typing Patterns Patterns are typed as follows:

• The unit pattern () is typed only by the empty context []

• qubit n is typed by a singleton context consisting of n − 1 Nones followed by
Some Qubit.

• bit n is typed similarly to qubit n

• If p1 is typed by Γ1, p2 is typed by Γ2, and Γ1 ⋓ Γ2 is valid, then (p1,p2) is
typed by Γ1 ⋓ Γ2.

We use the notation Γ ⊢ p :Pat for “Γ types the pattern p.”
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Ω⇒ p ∶W
Γ;Ω ⊢ output p ∶W

TypeCircOutput

Ω1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2

g ∈ G(W1,W2) Γ;Ω2,Ω ⊢ C ∶W
Γ;Ω1,Ω ⊢ p2 ← gate g p1 ;C ∶W

TypeCircGate

Ω⇒ p ∶W Γ, x ∶ ∣W ∣;Ω′ ⊢ C ∶W ′

Γ;Ω,Ω′ ⊢ x⇐ lift p;C ∶W ′ TypeCircLift

Γ;Ω1 ⊢ C ∶W Γ;Ω0,Ω2 ⊢ C ′ ∶W ′

Γ;Ω1,Ω2 ⊢ p← C;C ′ ∶W ′ TypeCircLet

Γ ⊢ t ∶ Box W1 W2 Ω⇒ p ∶W1

Γ;Ω ⊢ unbox t p ∶W2

TypeCircUnbox

Ω⇒ p ∶W1 Γ;Ω ⊢ C ∶W2

Γ ⊢ box (p ∶W1)⇒ C ∶ Box W1 W2

TypeBox

Figure 5.1: The typing rules for Qwire from Chapter 4. We’ve rearranged the rules
to match this presentation.

Typing Qwire Circuits Once our circuits use continuations (in gate g p1 (fun p2
⇒ c)), we have to include a form of continuation in the typing judgment as well. In
the following definition, we use the notation Γ ⊢ c :Circ for Types_Circuit Γ c.
Inductive Types_Circuit : OCtx → ∀ {w}, Circuit w → Set :=
| types_output : ∀ {Γ w} {p : Pat w}, Γ ⊢ p :Pat → Γ ⊢ output p :Circ
| types_gate : ∀ {Γ Γ1 Γ1' w1 w2 w} {f : Pat w2 → Circuit w}

{p1 : Pat w1} {g : Gate w1 w2},
Γ1 ⊢ p1 :Pat →
(∀ Γ2 Γ2' (p2 : Pat w2) {pf2 : Γ2' == Γ2 ● Γ},

Γ2 ⊢ p2 :Pat → Γ2' ⊢ f p2 :Circ) →
∀ {pf1 : Γ1' == Γ1 ● Γ},
Γ1' ⊢ gate g p1 f :Circ

| types_lift : ∀ {Γ1 Γ2 Γ w } {p : Pat Bit} {f : B → Circuit w},
Γ1 ⊢ p :Pat →
(∀ b, Γ2 ⊢ f b :Circ) →
∀ {pf : Γ == Γ1 ⋓ Γ2},
Γ ⊢ lift p f :Circ

Compare this to the original presentation of the typing rules (reproduced in Fig-
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ure 5.1). The rule for output is straightforward: If Γ types a pattern p, it types output
p. For gate application, we again implement the rule from Figure 5.1, except now we
have to quantify over typing contexts Γ2 that type the continuation. We name the
disjoint unions Γ ⋓ Γ1 and Γ ⋓ Γ2 as Γ1' and Γ2', respectively. For lift, we limit our-
selves to the Bit case, meaning that Γ2 merely has to type the continuation whether
we measured ∣1⟩ (true) or ∣0⟩ (false).

Note that by our construction, the typing rules for unbox and let are derived
rules, as these operations are themselves derived. We say that a boxed circuit is well
typed if the underlying circuit is well typed:
Definition Typed_Box {W1 W2 : WType} (b : Box W1 W2) : Set :=
∀ Γ (p : Pat W1), Γ ⊢ p :Pat → Γ ⊢ unbox b p :Circ.

The proof of TypeCircUnbox is then immediate. We can likewise show that the
composition of two circuits typed by disjoint contexts is itself well-typed, though the
proof in this case is slightly more involved:
Lemma compose_typing : ∀ Γ Γ' Γ'' W W'

(c : Circuit W) (f : Pat W → Circuit W'),
Γ ⊢ c :Circ →
(∀ Γ2 Γ2' (p2 : Pat w2) {pf2 : Γ2' == Γ2 ● Γ'},

Γ2 ⊢ p2 :Pat → Γ2' ⊢ f p2 :Circ) →
Γ'' == Γ ● Γ' →
Γ'' ⊢ compose c f :Circ.

This corresponds to TypeCircLet in Figure 5.1.

5.3 De Bruijin Circuits
Before we can compile circuits to density matrices, we need an intermediate repre-
sentation of circuits. While HOAS circuits are easy to write and compose, they are
very hard to transform into functions on density matrices. This is because they suffer
from two drawbacks: They are neither concrete nor compact.

We say that a circuit is concrete if none of its patterns are bound within the
circuit. That is, the patterns in a concrete circuit should look like (bit 2, qubit 3),
rather than (p1,p2) or simply p. In a well-typed boxed circuit, none of the patterns are
concrete: They are all either bound at the start of the circuit or in a gate continuation.
This makes it difficult to directly denote circuits: gate CNOT (bit 2, qubit 3) c is easy
to interpret as “apply a CNOT to (qu)bits 2 and 3”, but what does gate CNOT p c
mean?

We say that a circuit is flat if the wires it uses are numbered 0 through n for
some n. Flatness is important because if I say “apply a CNOT to (qu)bits 2 and 3 to
my quantum state”, it’s important that my quantum state should contain (qu)bits 2
and 3 and they should be in their expected positions. (That is to say that qubits 0
and 1 should exist.) HOAS circuits cannot be flat, by virtue of not being concrete,
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but compiling to flat, concrete circuits poses a much harder challenge than simply
compiling to concrete circuits1.

To address this challenge, we define de Bruijn circuits, inspired by de Bruijn
indices, where wire initialization automatically binds a wire to the first available
numerical index, and discarding shifts the remaining indices downwards2.

We will introduce de Bruijn (or DB) circuits, and how to construct them, by
example. Here is our bob circuit (from our teleportation example in Section 2.2), both
in higher-order abstract syntax and compiled to a (prettified) boxed DeBruijn_Circuit
:

Definition bob :=
box (x,y,q) ⇒
gate (y,q) ← bit_ctrl X @ (y,q);
gate (x,q) ← bit_ctrl Z @ (x,q);
gate () ← discard @ x;
gate () ← discard @ y;
output q.

Definition db_bob :=
db_box (Bit ⊗ Bit ⊗ Qubit) ⇒
db_gate (bit_ctrl X) (1, 2);
db_gate (bit_ctrl Z) (0, 2);
db_gate discard 0;
db_gate discard 0;
db_output 0.

In the bob circuit, we begin by binding two bits and a qubit to x, y and q,
respectively. We then apply a controlled X from y to q and then a controlled Z from
x to q. We then discard x and y (binding the outputs to the empty pattern ()) and
output the qubit q.

In the de Bruijn circuit, we begin by allocating two bits and a qubit, implicitly to
0, 1 and 2. We then apply a controlled X from wire 1 to 2 and a controlled Z from 0
to 2. We then discard bit 0. This operation shifts all the subsequent indices, so that
the remaining bit is now referred to as 0 and the qubit as 1. Discarding the other bit
repeats this shifting operation, leaving our qubit as 0. We then output the qubit.

We see that discard effectively closes the scope of a given binder. What opens a
binding scope? Clearly, the db_box operator at the start of the circuit binds variables,
but what if I wish to initialize a qubit in my circuit? In the example above, inserting
a db_gate init0 after the box would create a new qubit bound to 3. If instead we
placed the init0 between the two discards, it would bind that qubit to 2, since 2 was
freed up by the previous discard. The initialization gates init0, init1, new0 and new1

are the only gates that bind new variables; discard is the only one that terminates
them. (Additional gates for discarding wires will be introduced in Chapter 8.) The
remaining gates can be though of as merely functions on existing variables, though
meas changes the type of its input variable from a qubit to a bit.

We can now describe the compilation procedure. The first step in compiling HOAS
circuits to DB circuits is to concretize the variables, so that we can pattern-match
on the circuit’s own patterns. The get_fresh function takes in a wire type W and a

1In the latter case, we would simply maintain a natural number n corresponding to the smallest
wire number used so far and allocate fresh patterns with indices greater than n.

2These could reasonably be called “reverse de Bruijn circuits”, since the indices increase with
successive initializations, but the analogy to de Bruijn indices is loose in either case.
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context Γ, and returns a fresh pattern p and context Γ' such that Γ' types p at W:
Fixpoint get_fresh w (Γ : Ctx) : Pat w * Ctx:=

match w with
| One ⇒ (unit, [])
| Bit ⇒ (bit (length Γ), singleton (length Γ) w)
| Qubit ⇒ (qubit (length Γ), singleton (length Γ) w)
| w1 ⊗ w2 ⇒ let (p1, Γ1) := get_fresh w1 Γ in

match Γ ⋓ Γ1 with
| Invalid ⇒ (dummy_pat _, dummy_ctx)
| Valid Γ' ⇒ let (p2, Γ2) := get_fresh w2 Γ' in

match Γ1 ⋓ Γ2 with
| Invalid ⇒ (dummy_pat _, dummy_ctx)
| Valid Γ'' ⇒ ((pair p1 p2), Γ'')
end

end
end.

Note that the input and output contexts of get_fresh will never overlap so the Invalid
branches will never be entered. (We prove this in get_fresh_merge_valid.) In fact,
the first ∣Γ∣ elements of the output Γ' will always be None. This allows us to define
add_fresh, which also returns a pattern and a context, except here the context is the
Γ ⋓ Γ'. This context plays the role of a state in constructing the circuit.

The following hoas_to_db_box function simply provides a fresh pattern and state
for compiling the inner HOAS circuit to a DB circuit:
Definition hoas_to_db_box {w1 w2} (B : Box w1 w2) : DeBruijn_Box w1 w2 :=

match B with
| box f ⇒ let (p,Γ) := add_fresh w1 [] in

db_box w1 (hoas_to_db Γ (f p))
end.

We can now give the full code for hoas_to_db, which essentially threads this state
through its computation (but contains several functions that we will need to explain):
Fixpoint hoas_to_db {w} Γ (c : Circuit w) : DeBruijn_Circuit w :=

match c with
| output p ⇒ db_output (subst_pat Γ p)
| gate g p f ⇒ let p0 := subst_pat Γ p in

let (p',Γ') := process_gate g p Γ in
db_gate g p0 (hoas_to_db Γ' (f p'))

| lift p f ⇒ let p0 := subst_pat Γ p in
let Γ' := remove_pat p Γ in
db_lift p0 (fun b ⇒ hoas_to_db Γ' (f b))

end.

Let us begin with the simplest function, process_gate, which handles the con-
cretization part of the compilation procedure.
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Definition process_gate {w1 w2} (g : Gate w1 w2)
: Pat w1 → Ctx → Pat w2 * Ctx :=

match g with
| U _ | BNOT ⇒ fun p st ⇒ (p,st)
| init0 | init1 ⇒ fun _ st ⇒ add_fresh Qubit st
| new0 | new1 ⇒ fun p st ⇒ add_fresh Bit st
| meas ⇒ fun p st ⇒ match p with

| qubit v ⇒ (bit v, change_type v Bit st)
end

| discard ⇒ fun p st ⇒ (unit, remove_pat p st)
end.

This function takes in a gate, a concrete input pattern, and a state, then returns a new
concrete pattern and an updated state. For unitary gates, which have the same input
and output wire types, it simply returns the provided pattern and state. In effect, this
says “you can continue using this pattern in the continuation”. Similarly, process_gate
meas simply changes the given pattern from qubit v to bit v and updates the state
to reflect that change. Initialization produces a fresh bit or qubit and adds it to the
end of the state, and discard returns the pattern () and removes a bit from the state.
To be precise, it updates Some Bit to None in the state — this will be important for
what follows.

If we left out the subst_pats in the code above, it would convert bob to the
following circuit3:
Definition bob :=

box (bit 0, bit 1, qubit 2) ⇒
gate (bit_ctrl X) @ (1,2);
gate (bit_ctrl Z) @ (0,2);
gate discard @ 0;
gate discard @ 1;
output 2.

This circuit is concrete but it is not yet flat: By the end of the circuit, there is a
wire 2 but no 0 or 1. In order to flatten this circuit we need substitution contexts to
map variables to their flat equivalents. Fortunately, our Ctxs, which served admirably
in the role of state, also make good substitution contexts. To see why, note that there
are two ways of giving the size of a Ctx that differ by whether we count Nones, as
illustrated by the following example:
length [None; Some Bit; None; None; Some Qubit] = 5
size [None; Some Bit; None; None; Some Qubit] = 2

We can similarly define an index function that ignores Nones. In the above example
index 1 Γ = 0 and position 4 Γ = 1. If index is given an argument that corresponds

3Note that we don’t have a type for this intermediate representation, which is simply meant to
be illustrative.
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to a None or lies outside the bounds of the list, it returns 0. To perform substitution,
we simply map index throughout a pattern:
Fixpoint σ (Γ : Ctx) {w} (p : Pat w) : Pat w :=

match p with
| unit ⇒ unit
| qubit x ⇒ qubit (index x Γ)
| bit x ⇒ bit (index x Γ)
| pair p1 p2 ⇒ pair (σ Γ p1) (σ Γ p2)
end.

To see how this looks in practice, we return to our bob circuit, annotating each
line with the value of σ Γ 2 after each operation:
Definition bob :=

box (bit 0, bit 1, qubit 2) ⇒
gate (bit_ctrl X) @ (1,2); σ [Some Bit; Some Bit; Some Qubit] 2 = 2
gate (bit_ctrl Z) @ (0,2); σ [Some Bit; Some Bit; Some Qubit] 2 = 2
gate discard @ 0; σ [None ; Some Bit; Some Qubit] 2 = 1
gate discard @ 1; σ [None ; None ; Some Qubit] 2 = 0
output 2.

Performing all of the substitutions as we go yields the de Bruijn circuit db_bob
with which we began this section.

5.4 Matrices and Semantics
To turn our De Bruijn circuits into functions on density matrices, we need libraries
for complex numbers and matrices. We begin with our complex number library, a
modified version of the Coquelicot “Complex” library (Boldo et al., 2015).

5.4.1 Complex Numbers
Coquelicot defines its complex numbers as simply pairs of Coq reals.
Definition C := R * R.

The Coq real number library is axiomatic: 0, 1, +, ∗ and other terms and operations
are defined using the Coq keyword Parameter, which treats them as inhabitants of
the given type without requiring them to be further specified. The basic properties of
addition and multiplication are then given in terms of axioms, which have no proof.
An injection is then established from the integers to the reals.

This representation has advantages and disadvantages. Its main disadvantage is
that it is impossible to compute with Coq’s reals, since its basic operations are non-
computational. For example, though we can prove that 1 + 1 = 2, we cannot simplify
1+1 to 2. This is a common difficulty with representations of real numbers, including

67



those of the Mathematical Components (Mahboubi et al., 2016) and C-CORN (Cruz-
Filipe et al., 2004) libraries. On the other hand, a major advantage of extending Coq’s
reals is that it gives us access to Coq’s automation techniques, including field, which
converts field expressions into a normal form to check equality, and fourier which
applies the Fourier-Motzkin algorithm (Fourier, 1826; Motzkin, 1936) to decide real
(in)equalities. The Coq standard library also provides the powerful lra (linear real
arithmetic) tactic which subsumes field and fourier. We define our own tactics that
extend this automation to complex numbers, which we discuss in Chapter 9.

Our additions to Coquelicot are relatively modest. We show that for any complex
number c, c ∗ c̄ is a real number, which is important for multiplying a matrix by its
adjoint, along with a few related lemmas about the complex conjugate. We also prove
a number of lemmas about taking square roots, which are important for reasoning
about states with Hadamard matrices applied.

Since certain quantum algorithms apply phase shift gates, which correspond to
the matrix

(1 0
0 eiθ

)

for some real number θ, we define eiθ using Euler’s formula:
Definition Cexp (θ : R) : C := cos θ + i * sin θ

We also use this to prove the special case of Euler’s identity, which we write as
Cexp PI = −1. Note that we cannot define the general case of complex exponentiation
as a function, since xy can have multiple solutions for x, y ∈ C.

Our modified version of Coquelicot’s complex number library is available in the
Qwire Github repository (https://github.com/inQWIRE/QWIRE) as Complex.v.
This file also removes all of Coquelicot’s dependencies, including the SSReflect and
Mathematical Components libraries.

5.4.2 The Matrix Library
The denotational semantics of Qwire is implemented using a matrix library cre-
ated specifically for this purpose. Matrices are simply functions from pairs of natural
numbers to complex numbers.4

Definition Matrix (m n : N) := N → N → C.

The arguments m and n, which are the dimensions of the matrix, are not mentioned
on the right hand of the equals sign, but they are used to define certain operations
on matrices, such as the Kronecker product and matrix multiplication, which depend
on these dimensions. They are also useful as an informal annotation that aids the
programmer, in the vein of phantom types (Leijen and Meijer, 1999). We say a matrix
is well-formed when it is zero-valued outside of its domain.

4As a Coq technicality, note that we require the functional extensionality axiom to prove
matrix equality.

68

https://github.com/inQWIRE/QWIRE


Definition WF_Matrix {m n} (M : Matrix m n) : P :=
∀ i j, i ≥ m ∨ j ≥ n → M i j = 0.

The library is designed to facilitate reasoning about and computing with matri-
ces. Treating matrices as functions allows us to easily express otherwise complicated
matrix operations. Consider the definitions of Kronecker product (⊗) and adjoint (†),
where x∗ is the complex conjugate of x:
Definition kron {m n o p} (A : Matrix m n) (B : Matrix o p) :

Matrix (m*n) (o*p) :=
fun x y ⇒ A (x / o) (y / p) * B (x mod o) (y mod p).

Infix "⊗" := kron (at level 40, left associativity).

Definition adjoint {m n} (A : Matrix m n) : Matrix n m :=
fun x y ⇒ (A y x)∗.

Notation "A †" := (conj_transpose A) (at level 0).

These definitions allow us to easily prove properties of matrices, like that the
adjoint is involutive, by calling basic automation tactics:
Lemma adjoint_involutive : ∀ {m n} (A : Matrix m n), A†† = A.
Proof. intros. mlra. Qed.

5.4.3 Density Matrices
We aren’t just interested in matrices broadly, but in the specific density matrices and
unitary matrices discussed in Chapter 2. We start with some preliminary definitions.
A unitary matrix is a well-formed, n × n matrix A such that A† × A is the identity
matrix 'I_n.
Definition is_unitary {n} (A : Matrix n n) :=

WF_Matrix A ∧ A† × A = 'I_n.

A pure state of a quantum system is one that corresponds to a unit vector ∣ϕ⟩.
We can specify a well-formed unit vector as
Definition Pure_State_Vector {n} (ϕ : Matrix n 1): P :=

WF_Matrix n 1 ϕ ∧ ϕ† × ϕ = 'I_1.

and use this definition to define pure states:
Definition Pure_State {n} (ρ : Matrix n n) : P :=
∃ ϕ, Pure_State_Vector ϕ ∧ ρ = ϕ × ϕ†.

A density matrix, or mixed state, is a linear combination of pure states represent-
ing the probability of each pure state.
Inductive Mixed_State {n} (ρ : Matrix n n) : P :=
| Pure_S : ∀ ρ, Pure_State ρ → Mixed_State ρ
| Mix_S : ∀ (p : R) ρ1 ρ2, 0 < p < 1 →
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Mixed_State ρ1 →
Mixed_State ρ2 →
Mixed_State (p .* ρ1 .+ (1-p) .* ρ2).

Note that every mixed state is also well formed, since scaling and addition preserve
well-formedness.

A superoperator is a function on square matrices that takes mixed states to mixed
states.
Definition Superoperator m n := Matrix m m → Matrix n n.
Definition WF_Superoperator m n (f : Superoperator m n) :=

∀ (ρ : Matrix m m), Mixed_State ρ → Mixed_State (f ρ).

Any m × n matrix A can be lifted to a superoperator from n to m by multiplying an
input matrix by A and its adjoint:
Definition super {m n} (A : Matrix m n) : Superoperator n m :=

fun ρ ⇒ A × ρ × A†.

Of course, not every matrix so lifted will produce a well-formed superoperator that
preserves mixed states. We will address which matrices have this property, along with
broader questions about well-formed quantum structures, in Chapter 6.

5.5 Denotation of Qwire
Wire Types, Contexts and Patterns In order to interpret circuits as superop-
erators over density matrices, we will also give types, contexts, gates, and patterns
algebraic interpretations. For clarity we write J−K for the denotation of a variety of
Qwire objects, which we express via a Coq type class.
Class Denote source target := { denote : source → target }.
Notation "J x K" := (denote x) (at level 10).

We interpret every wire type as the number of Bit or Qubit wires in that type,
so JQubit ⊗ (One ⊗ Bit)K = 2. Contexts are similarly denoted by the number of Bit or
Qubit wires they type.

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

Patterns of type Pat W are interpreted as permutation matrices
of dimension 2JW K × 2JW K. These matrices are constructed via multi-
ple applications of the swap matrix to the right. In the simple case,
we swap two qubits via a series of adjacent swaps. For instance
swap_two 3 0 2 = (I2 ⊗ swap)(swap ⊗ I2)(I2 ⊗ swap) swaps the 0th and
2nd qubits in a 3-qubit system.

For more general permutations, we begin by translating the input
pattern into a list: (2,(0,1)) becomes [2,0,1], which then becomes [(0,2),(1,0),(2,1)]. This
sequence of pairs is then translated into a sequence of swap matrices that ensure that
qubit 2 is put in the zero position and so forth. In this way output p is interpreted as
a reordering operation.
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Unitaries Every gate of type Unitary W corresponds to a unitary matrix of dimen-
sion 2JW K×2JW K. The following gates are built-in to Qwire, but additional gates may
be added:

JXK = (0 1
1 0
) , JY K = (0 −i

i 0
) , JZK = (1 0

0 −1) , JHK = 1√
2
(1 1
1 −1) , JRϕK = (1 0

0 eiϕ
)

We also have Jctrl UK which is equal to the block matrix

(I 0
0 JUK) .

We can prove that every denoted unitary satisfies the is_unitary predicate defined
in the previous section:
Lemma unitary_gate_unitary : ∀ {W} (u : Unitary W), is_unitary JuK.
Gates We can now look at denoting gates in general. We will begin in a simplified
setting, where the gate is being applied to a system of the corresponding size in the
correct order (for instance, CNOT being applied to qubits 0 and 1 of a two qubit
system). In the unitary case, we simply apply U and its adjoint to the state, written
mathematically by JU uKρ = JuKρJuK†

or in Coq asJU uK ρ = super U ρ

We can give the denotation of the remaining gates in Coq, following the denotation
given in Section 4.5:
Definition denote_gate {W1 W2} (g : Gate W1 W2) :

Superoperator 2^JW1K 2^JW2K :=
match g with
| U u ⇒ super JuK
| init0 | new0 ⇒ super ∣0⟩
| init1 | new1 ⇒ super ∣1⟩
| meas ⇒ Splus (super ∣0⟩⟨0∣) (super ∣1⟩⟨1∣|)
| discard ⇒ Splus (super ⟨0∣) (super ⟨1∣)
end.

where Splus sums over superoperators.

Gates in Context It takes some work to lift this denotation function to the con-
text of denoting gates in a circuit, where we may have additional unused wires or
non-adjacent wires input to one gate. We will begin by giving the denotation for sin-
gle qubit unitaries, which we pad with identity matrices before applying them to a
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quantum state. For instance, if we want to apply a unitary U to qubit 3 in a 5-qubit
system ρ, this amounts to the operation

(I23 ⊗U ⊗ I21) × ρ × (I23 ⊗U ⊗ I21)†,

which we write in Coq as
super ('I_(2^3) ⊗ JUK ⊗ 'I_(2^1)) ρ.

It’s similarly easy to describe the semantics of gates like measurement, which we
can pad with identity matrices, or initialization, which we add to the end of the
circuit:
Definition apply_meas {n} (k : N) : Superoperator (2^n) (2^n) :=

Splus (super (Id (2^k) ⊗ ∣0⟩⟨0∣ ⊗ Id (2^(n-k-1))))
(super (Id (2^k) ⊗ ∣1⟩⟨1∣ ⊗ Id (2^(n-k-1)))).

Definition apply_init0 {n} : Superoperator (2^n) (2^(n+1)) :=
super (Id (2^n) ⊗ ∣0⟩).

Here, initializing a ∣0⟩ qubit in the 2 qubit system ρ yields (I4 ⊗ ∣0⟩)ρ(I4 ⊗ ⟨0∣).
What about unitaries with multiple controls? Here things become a bit harder,

since we cannot simply pad the unitary on either side, given that the target qubits
may not even be adjacent to one another or in the desired order (see, for instance,
the gate in Figure 5.2). Instead, we make use of the observation5 that

control U = ∣1⟩ ⟨1∣⊗U + ∣0⟩ ⟨0∣⊗ I

where I is the identity matrix with the same dimensions as U . This expression can
easily be padded with the identity in the middle, as in

∣1⟩ ⟨1∣⊗ I4 ⊗U + ∣0⟩ ⟨0∣⊗ I4 ⊗ I

or reversed, as in
U ⊗ ∣1⟩ ⟨1∣ + I ⊗ ∣0⟩ ⟨0∣

when the target is above the control.
This gives us a blueprint for applying unitary gates which may have multiple

control qubits to arbitrary systems. First we need to know where we will be placing the
controls and where we will be placing the single-qubit gate. We put this information
into a zipper structure (see Figure 5.2), containing the controls above the unitary,
those after it, and the 2×2 unitary matrix. For instance, suppose we wished to apply
ctrl (ctrl (ctrl Z)) to the control wires 0,2,7, and the target wire 4 in an eight-qubit
system: We would construct the zipper ([true; false; true; false], JZK, [false; false
; true]).

5This observation is due to Kesha Hietala, who proposed the algorithm that follows as an efficient
alternative to the liberal use of swap gates (our prior approach).
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Figure 5.2: A ctrl (ctrl (ctrl Z)) gate applied to 0,2,7 and 4, and it’s corre-
sponding zipper.

We would then feed this zipper into the following (symmetric) functions:
Fixpoint ctrl_list_to_unitary_l (l r : list B) (u : Square 2) :

(Square (2^(length l + length r + 1))) :=
match l with
| false :: l' ⇒ 'I_ 2 ⊗ ctrl_list_to_unitary l' r u
| true :: l' ⇒ ∣1⟩⟨1∣ ⊗ ctrl_list_to_unitary l' r u .+ ∣0⟩⟨0∣ ⊗ 'I_ _
| [] ⇒ ctrl_list_to_unitary_r (rev r) u
end.

Fixpoint ctrl_list_to_unitary_r (r : list B) (u : Square 2) :
(Square (2^(length r + 1))) :=
match r with
| false :: r' ⇒ ctrl_list_to_unitary_r r' u ⊗ Id 2
| true :: r' ⇒ ctrl_list_to_unitary_r r' u ⊗ ∣1⟩⟨1∣ .+ 'I_ _ ⊗ ∣0⟩⟨0∣
| [] ⇒ u
end.

Note that 'I_ _ infers the correct dimensions for the identity matrix. Note also that
the second list is reversed before it is passed to ctrl_list_to_unitary_r, allowing us
to read the list from right to left.

In our example, ctrl_list_to_unitary_r [true; false; false] JZK would produce
the unitary matrix

(Z ⊗ I2 ⊗ I2 ⊗ ∣1⟩ ⟨1∣) + (I8 ⊗ ∣0⟩ ⟨0∣).

Applying ctrl_list_to_unitary to ([true; false; true; false], Z, [false; false; true
]) would then produce

∣1⟩⟨1∣⊗(I2⊗(∣1⟩⟨1∣⊗(I2⊗(Z⊗I2⊗I2⊗ ∣1⟩⟨1∣+I8⊗ ∣0⟩⟨0∣))+ ∣0⟩⟨0∣⊗I32))+ ∣0⟩⟨0∣⊗I128

which we could apply to our entire 28 × 28 density matrix.
We could then apply this unitary to the entirety of the state.
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Circuits We are now in a position to define the general denotation of the De Bruijn
circuits from Section 5.3:
Fixpoint denote_db_circuit {w} padding input (c : DeBruijn_Circuit w) :

Superoperator (2^(padding+input)) (2^(padding+JwK)) :=
match c with
| db_output p ⇒ super (pad (padding+input) JpK)
| db_gate w1 w2 g p c' ⇒

let input' := (input + Jw2K - Jw1K) in
compose_super (denote_db_circuit padding input' c')

(apply_gate g (pat_to_list p))
| db_lift p c' ⇒

let k := get_var p in
Splus

(compose_super
(denote_db_circuit padding (input-1) (c' false))
(super ('I_(2^k) ⊗ ⟨0∣ ⊗ 'I_(2^(input-k-1)))))

(compose_super
(denote_db_circuit padding (input-1) (c' true))
(super ('I_(2^k) ⊗ ⟨1∣ ⊗ 'I_(2^(input-k-1)))))

end.

Here input is the number of input qubits and padding allows us to pad the denotation
with identities, which is useful in a number of lemmas.

The denotation of output p is simply the denotation of p: a reordering of the qubits
via SWAP gates. Applying a gate consists of composing the apply_gate operation above
with the denotation of the rest of the circuit. Finally, lift applies the discard operations
super ('I_(2^k) ⊗ ⟨0∣ ⊗ 'I_(2^(input−k−1)))) and super ('I_(2^k) ⊗ ⟨1∣ ⊗ 'I_(2^(input
−k−1)))), takes the denotation of the rest of the circuit, and sums the results.

This gives us a superoperator on density matrices and allows us to verify properties
of our circuits.

5.6 Functional Notations
Given that Qwire is embedded in Coq’s Gallina functional programming language,
it may be awkward for users to write quantum programs in an imperative style.
We address this issue by providing two similar syntaxes for Qwire programs: The
imperative syntax is meant to represent Qwire normal forms and the functional
syntax is meant to be more usable while normalizing to the imperative form. Both
syntaxes are implemented using Coq’s notations feature and the second generally
supersedes the first.
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Imperative Syntax To get a sense for the imperative Qwire syntax, we will
present an implementation of Deutsch’s algorithm6. Note that throughout this thesis
we elide the underscores that serve to differentiate our notations from our constructors
and Coq’s built-in functions.

Definition deutsch Uf :
Box One Bit :=
box () ⇒
gate x ← init0 @ ();
gate x ← H @ x;
gate y ← init1 @ ();
gate y ← H @ y;
let (x,y) ← unbox Uf (x,,y);
gate y ← meas @ y;
gate () ← discard @ y;
gate x ← H @ x;
gate x ← meas @ x;
output x.

0

1

H

H
Uf

H meas

meas

Note that Deutsch’s algorithm consists mostly of applying basic gates to single
qubit wires, along with one unboxing of the input circuit Uf. In the simplest case, our
gate notation simply hides some higher order abstract syntax:
Notation "'gate' p2 ← g @ p ; c2" := (gate g p (fun p2 ⇒ c2))

We also have special cases of the gate notation, firstly for gates with the unit
output,
Notation "'gate' () ← g @ p ; c2" := (gate g p (fun _ ⇒ c2))

and secondly for gates with multiple outputs
Notation "'gate' ( p1 , p2 ) ← g @ p ; c2" :=

(gate g p (fun x ⇒ let (p1,p2) := wproj x in c2))

The wproj function here matches on a pattern of type Pat (W1 ⊗ W2) and returns
its two constituent sub-patterns as p1 and p2. Coq’s limited capacity for recursive
notations doesn’t allow us to extend this notation to have arbitrary patterns on the
left (since (p1,p2) cannot be made independent of the rest of the notation), instead
we provide additional notations for patterns of three and four sub-patterns.

Similarly to gate, we write box p ⇒ C for box (fun p ⇒ C) and let p ← c1 ; c2 for
compose c1 (fun p ⇒ c2). These notations also have variants for () and pairs, imple-
mented in the same manner as gate. The perceptive reader will notice that when
we unbox Uf we provide the pattern (p1,,p2). This notation is defined using Coq’s
recursive notations7 as

6We will leave the explanation of this algorithm for Section 7.1.3, in which we verify its correctness.
For this chapter, the reader only needs to know the circuit we are implementing.

7The Coq reference manual calls these recursive patterns (Coq Development Team, 2018). We
try to avoid using “patterns” to refer to anything but wire patterns, hence “recursive notations”.
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Notation "( x ,, y ,, .. ,, z )" := (pair .. (pair x y) .. z)

and can be nested. We use the (admittedly ugly) double comma notation in order to
save the single comma notation for Qwire’s functional syntax.

We also define a lift_wire function that checks if a wire is a Bit or Qubit and
either directly calls lift on it or else measures and then lifts it. This is built into our
notation for lift, along with variants that allow the lift notation to be applied on
patterns of wires (implicitly measuring and lifting them one at a time).

Functional Syntax We can now introduce our “functional” syntax for quantum
circuit, again via the example of Deutsch’s algorithm:
Definition deutsch (Uf : Square_Box (Qubit ⊗ Qubit)) : Box One Bit :=

box () ⇒
let x ← H $ init0 $ ();
let y ← H $ init1 $ ();
let (x,y) ← Uf $ (x,y);
let () ← discard $ meas $ y;
meas $ _H $ x.

The reader will notice a few changes:

1. All explicit uses of gate applications have been replaced by let.

2. Using a boxed circuit Uf looks no different than applying a basic gate like H or
meas.

3. We can chain circuits: H $ init0 $ () applies init0 to () and then immediately
applies H to the initialized qubit.

4. There is no explicit call to output.

These work through two simple coercions: We use output to coerce patterns to
circuits and boxed_gate to coerce gates to boxed circuits. We then define $ as a
notation for the following function:
Definition apply_box {w1 w2} (b : Box w1 w2) (c : Circuit w1) :

Circuit w2 := let x ← c; unbox b x.

When we write init0 $ (), then, we are really calling apply_box with the arguments
boxed_gate init0 and output (). This function returns a circuit producing a qubit,
which can then be provided as the second argument to apply_box (boxed_gate H),
producing a superimposed qubit.

How then do we interpret Uf $ (x,y)? It is natural to assume that this is sim-
ply notation for apply_box Uf (output (pair x y)). However, things are slightly more
complicated than that. We would like to be able to write let (x,y) ← (H,H) $ (x,y) or
even let (x,y) ← (H $ x, y). This requires (_,_) to take a pair of circuits with outputs
W1 and W2 and return a Circuit W1 ⊗ W2. This notation calls the function pair_circ
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Figure 5.3: The Deutch-Jozsa algorithm on 8 qubits (including the target).

which does exactly that. This notation is also defined as a recursive notation, allowing
us to write (H,X,Z,q) and to nest circuit pairs inside other circuit pairs.

All of the functions we use here are fairly lightweight. Still, it is impossible to write
a circuit in normal form using these notations (and we would like our normal forms
to be readable when stepping through proofs). Hence, we maintain the imperative
syntax for representing circuits, and the second presentation of deutsch efficiently
reduces to the first.

Qwire in Action Just to give the reader a better sense for the flavor of Qwire,
we will conclude with two more interesting programs.

The first is the Deutsch-Josza algorithm (Deutsch and Jozsa, 1992), a generaliza-
tion of Deutsch’s algorithm to an arbitrary number of qubits. Our implementation
uses the notations g #n for inParMany g n (that is, apply n copies of g in parallel) and
(()) for a pattern containing only units:
Definition Deutsch_Jozsa (n : N)

(Uf : Box ((n ⊗ Qubit) ⊗ Qubit) ((n ⊗ Qubit) ⊗ Qubit)) :
Box One (n ⊗ Bit) :=
box () ⇒
let qs ← H #n $ init0 #n $ (());
let q ← H $ init1 $ ();
let (qs,q) ← Uf $ (qs,q);
let () ← discard $ meas $ q;
meas #n $ _H #n $ qs.

We also provide a coin tossing program that uses dynamic lifting (Figure 5.4).
First, we will define a simple coin toss.
Definition coin_flip : Box One Bit :=
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Figure 5.4: A basic coin flip circuit and a multiple-coin flipping circuit using dynamic
lifting. The braces denote branching on a classical term (nats or bools).

box_ () ⇒ meas $ _H $ init0 $ ().

Now we define a program that tosses up to n coins, stopping and returning 0 if a tails
is shown, and returning 1 if all the tosses come up heads:
Fixpoint coin_flips_lift (n : N) : Box One Bit :=

box_ () ⇒
match n with
| 0 ⇒ new1 $ ()
| S n' ⇒ lift_ x ← coin_flip $ ();

if x then coin_flips_lift n' $ ()
else new0 $ ()

end.

This concludes our demonstration of Qwire circuits and our chapter on Qwire
in practice.
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Chapter 6

Verifying Qwire

Before we begin verifying quantum circuits in Qwire, it’s important to verify Qwire
itself. What do we mean by “verifying Qwire ”? Qwire has notions like unitaries,
density matrices, mixed states, superoperators, and even matrices themselves that
aren’t enforced at the type level. One can write the following matrix definition in
Coq:
Definition bad_matrix : Matrix 4 4 := fun x y ⇒ 6.

This clearly doesn’t correspond to a valid 4 × 4 matrix: It has infinitely many non-
zero elements. Similarly, Density n is just a notation for an n × n matrix, and a
Superoperator, which should be a mapping between proper density matrices, is simply
a function from some Density m to Density n. Instead, the properties we care about are
enforced by extrinsic predicates like WF_Matrix, WF_Unitary, Pure_State, Mixed_State,
and WF_Superoperator that guarantee that our terms have the desired properties. In
the following section, we will discuss each of these properties and how we show that
our matrices possess them and our functions preserve them.

We are also concerned with broader questions about the correctness of Qwire.
One such question is whether circuit composition corresponds to function composi-
tion, as it should. We will deal with these questions in the following section.

6.1 Predicates and Preservation
6.1.1 Well-Formed Matrices
As we noted in Chapter 5, Qwire matrices are simply functions from pairs of natural
numbers (corresponding to row-column coordinates) to complex numbers. We say
that such a matrix is well-formed when it is 0 outside the specified bounds. Recall
that we capture this in the following predicate:
Definition WF_Matrix (m n: N) (A : Matrix m n) : P :=
∀ x y, x ≥ m ∨ y ≥ n → A x y = 0.
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Beyond proving that the matrices we frequently use, such as unitary operators
and qubit matrices, are well-formed, we want to show that the various operations we
perform on matrices preserve well-formedness. Our matrix library proves this property
about all of our functions from matrices to matrices, including +,∗,×,⊗, ⊺, and †.

It is interesting to note which theorems about matrices require well-formedness
and which do not. This tells us whether these are theorems about functions that just
happen to apply to matrices as a special case, or whether they are specific to matrices.
Naturally, the left and right additive identities on matrices apply to all functions: If
we lift + to operate on functions, then ∀f, (λx.0)+f = f . By similar reasoning, matrix
addition is commutative and distributive even for ill-formed matrices. The transpose
and adjoint operators can be thought of as simply swapping their arguments (and
negating the complex component in one case) and thus are trivially involutive.

Operations like the trace, matrix multiplication, and Kronecker product are more
difficult to analyze, given that they use the matrix’s dimensions in their definitions.
Still, it is interesting to note that, of the core properties of matrix arithmetic, only
three required well-formedness in their proofs:
Lemma Mmult_1_l: ∀ m n (A : Matrix m n), WF_Matrix m n A → 'I_m × A = A.
Lemma Mmult_1_r: ∀ m n (A : Matrix m n), WF_Matrix m n A → A × 'I_n = A.
Lemma Kron_1_l : ∀ m n (A : Matrix m n), WF_Matrix m n A → 'I_1 ⊗ A = A.

Kron_1_r, by contrast, simply states that ∀ m n (A : Matrix m n), A ⊗ 'I_1 = A. This is
because the dimensions of the right-side matrix appear in the definition of the Kro-
necker product, so (A ⊗ 'I_1) x y becomes A (x/1) (y/1) ∗ 'I_1 (x mod 1) (y mod 1). Since
x mod 1 is always 0 and 'I_1 0 0 = 1, this easily simplifies to A x y.

Obviously, well-formedness is important for all of our unitary operators and den-
sity matrices. Therefore, our predicates WF_Unitary U and Mixed_State ρ themselves
assert that U and ρ are well-formed matrices.

6.1.2 Unitarity
For every gate introduced in Chapter 5, we have a corresponding unitary matrix. Our
WF_Unitary predicate is quite simple:
Definition WF_Unitary {n: N} (U : Matrix n n): P :=

WF_Matrix n n U ∧ U † × U = Id n.

We can easily prove that every concrete unitary operator satisfies this predicate
and that the control and adjoint operations preserve it. For most of our operators,
with the exception of the phase shift by arbitrary real numbers, we can further prove
that they are their own adjoints and, hence, inverses.

We can take things a step further. Not only do we want to know that our basic
unitary matrices are in fact unitary, but we also want to know that when we apply a
unitary gate to a large quantum state, this transformation is unitary. In the case of
applying a single-qubit unitary U , this amounts to verifying that Im⊗U ⊗In is a uni-
tary matrix for any m and n. In the case of controlled unitaries, this involves proving
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that the rather involved procedure in Section 5.5 produces unitary matrices. We have
verified this procedure, which will allow us to show that our circuits correspond to
valid superoperators in the next section.

6.1.3 Pure and Mixed States
As discussed in our introduction to quantum computing (Chapter 2), we have two
types of quantum states: pure states and mixed states. Since mixed states are simply
distributions over pure states, it makes sense to begin with the definition of pure
states.

Formally, a pure state in density matrix form is an n × n matrix ρ satisfying the
following properties (Hall (2013), Section 19.3):

1. It is self-adjoint (or Hermitian),

2. It is positive semidefinite.

3. trace(ρ) = 1.

4. ρ2 = ρ.

The fourth item distinguishes pure states from mixed states.
The first, third, and fourth properties were covered in the introduction and are

fairly easy to check. The fourth property will hold whenever trace(ρ2) = 1, which
simplifies checking it even further.

Positive semidefiniteness gives us some trouble. We call a Hermitian matrix ρ
positive semidefinite if, for every appropriately sized vector v, v†ρv ≥ 0, treating v†ρv
as a scalar. This is a difficult property to check since it quantifies over all vectors
v. There exist a number of equivalent formulations, the most popular being that the
eigenvalues of the matrix are all positive, but none are easy to check.

Instead, we return to our definition of pure states from Chapter 2, in which we
noted that a pure state ∣ϕ⟩ in vector form becomes ∣ϕ⟩ ⟨ϕ∣ in density matrix form. In
Coq:
Definition Pure_State {n} (ρ : Density n) : P :=
∃ (ϕ : Matrix n 1), Pure_State_Vector ϕ ∧ ρ = ϕ × ϕ†.

What is a pure state as a vector? It is simply any complex vector ∣ϕ⟩ whose inner
product is 1. Equivalently, ⟨ϕ∣ ∣ϕ⟩ = I1. In our formalization, we add that the matrix
must be well-formed:
Definition Pure_State_Vector {n} (ϕ : Matrix n 1): P :=

WF_Matrix n 1 ϕ ∧ ϕ† × ϕ = 'I_1.

Note that it is not trivial to prove that an arbitary matrix is a Pure_State as
we have defined it: It requires us to provide the corresponding pure state vector as a

81



witness. However, it has proven far more usable in practice than any of the definitions
given above.

A mixed state is generally defined as a sum ∑i piρi, where each ρi is a pure state,
every pi is in [0,1], and ∑i pi = 1. We express this using the following inductive
predicate:
Inductive Mixed_State {n} : (Matrix n n) → P :=
| Pure_S : ∀ ρ, Pure_State ρ → Mixed_State ρ
| Mix_S : ∀ (p : R) ρ1 ρ2, 0 < p < 1 → Mixed_State ρ1 → Mixed_State ρ2 →

Mixed_State (p * ρ1 + (1-p) * ρ2).

Note that this definition makes mixed states into a superset of pure states, as did
our use of square brackets in the equation above. This is a fairly common practice
and useful for our purposes: We will often care that a matrix corresponds to a valid
quantum state, but we will almost never care that it is impure. If we wished to express
that a state was mixed in the strict sense, we could simply write Mixed_State ρ ∧ ¬
Pure_State ρ.

We separately prove important properties of mixed states: for instance, that they
all correspond to well-formed matrices and have traces that are equal to one. Most
importantly, we show that they are preserved by unitary transformations and other
operations. This brings us to the notion of a superoperator.

6.1.4 Superoperator Correctness
A superoperator is a function that takes mixed states to mixed states. Since our
type of superoperator is simply a function from matrices to matrices, we introduce a
predicate that says a superoperator truly preserves mixed states:
Definition WF_Superoperator {m n} (f : Superoperator m n) :=

(∀ ρ, Mixed_State ρ → Mixed_State (f ρ)).

One of the most relevant results for quantum computing is that every unitary
operator preserves mixed states. We first show that this is true for pure states, and
then we lift it to mixed states. We get the following result:
Lemma WF_Superoperator_unitary : ∀ {n} (U : Matrix n n),

WF_Unitary U → WF_Superoperator (super U).

where super U ρ is UρU †.
As we have noted in our section on the WF_Unitary predicate, we have shown that

our denotation of unitary gates corresponds to a valid unitary transformation even
when applied to a multiple-qubit system. Combined with the lemma above, this gets
us much of the way towards verifying that our circuits are valid superoperators. First,
however, we will present a simpler lemma: Applying a gate to the appropriate number
of qubits is a superoperator:
Lemma denote_gate_correct : ∀ {W1} {W2} (g : Gate W1 W2),

WF_Superoperator (denote_gate true g).
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This lemma deals only with the application of gates to the correct number of
qubits, outside of the context of a larger circuit. However, it contains most of the
reasoning about the different kinds of gates relevant to our main theorem of this
section. In particular, it uses our WF_Superoperator_unitary lemma and proves sim-
ilar results about measurement, initialization, and discard: Each operation preserves
mixed states. However, it is limited by its assumption that gates are being applied
to quantum states of exactly the same arity: for instance, measurement to a single
qubit or CNOT to two qubits. Hence, we prove the following theorem, which cannot
use denote_gate_correct directly but generalizes its result to larger quantum states.

Theorem 9. Every well-typed static circuit corresponds to a valid superoperator.

Theorem denote_static_circuit_correct : ∀ W (Γ0 Γ : Ctx) (c : Circuit W),
Static_Circuit c →
Γ ⊢ c:Circ →
WF_Superoperator (denote_circuit c Γ0 Γ).

A static circuit is any circuit that doesn’t do dynamic lifting; that is, it normalizes
to a sequence of gate applications followed by an output. To understand why we limit
this result to static circuits, recall the semantics of a circuit with lifting. Dynamic
lifting branches on the value of some bit: It breaks our distribution over pure states
into two sub-distributions over pure states, and then it applies distinct circuits to each
sub-distribution. Our WF_Superoperator predicate only says that a function takes
full distributions to full distributions over quantum states. By contrast, to reason
about sub-distributions, we would require a predicate that asserts that our function
takes sub-distributions of weight w to sub-distributions of weight w (again, over pure
states). We could then prove that this property holds of arbitrary well-typed circuits,
from which we could immediately derive that well-typed circuits correspond to valid
Superoperators.

Aside from making us reason about arbitrary quantum states, proving
denote_static_circuit_correct requires us to connect our Types_Circuit predicate
to narrower restrictions on circuits. For instance, our correctness lemma for applying
a unitary gate to an n-qubit quantum state requires that the specified wire indices
should be less than n, which follows from well-typedness. The lemma does not, how-
ever, demand that all the indices be disjoint, as the linear type system does. Instead,
if we say “apply ctrl Z to qubits 1 and 1”, the denotation function will treat this
as simply, “apply Z to qubit 1”. We have similar requirements for applying initial-
ization, measurement, or discard gates. The fact that ill-typed circuits can produce
valid superoperators doesn’t bother us, however. We only concern ourselves with the
denotation of well-typed circuits, and these all correspond to valid superoperators.

The measurement and initialization cases of denote_static_circuit_correct rely
upon the operator sum decomposition theorem (Kitaev et al., 2002, Section 11.1) which
says that

f(ρ) =∑
m

AmρA
†
m
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is a valid superoperator if and only if

∑
m

A†
mAm = I.

We have axiomatized this theorem in the Coq development due to the difficulty of
connecting our definition of mixed states to the mathematical description given in the
previous subsection, and thereby to the definitions used in proving the operator sum
decomposition theorem. In principle, we could use this theorem to define mixed states
but we feel that this definition would be less intuitive. Note that we can immediately
derive that applying unitaries preserves mixed states from this axiom, however we
prefer to prove that (and the initialization case) directly, without recourse to an
axiom. We summarize the axioms used in the Qwire development in Chapter 10.

6.2 Towards Compositionality
An important next step for Qwire is proving that the composition lemma holds: The
composition of two circuits Jp ← c; c′K should be equal to Jc′ pK ○ JcK. We give a full
statement of denote_compose below:
Fact denote_compose : ∀ W (c : Circuit W) (Γ : Ctx),
Γ ⊢ c :Circ →
∀ W' (f : Pat W → Circuit W') (Γ0 Γ1 Γ1' Γ01 : Ctx),
(∀ Γ2 Γ2' (p2 : Pat w2) {pf2 : Γ2' == Γ2 ● Γ},

Γ2 ⊢ p2 :Pat → Γ2' ⊢ f p2 :Circ) →
Γ1' == Γ1 ● Γ →
Γ01 == Γ0 ● Γ1 →
denote_circuit (compose c f) Γ0 Γ1' =
compose_super
(denote_circuit (f (add_fresh_pat w Γ1)) Γ0 (add_fresh_state W Γ1))
(denote_circuit c (Γ01) Γ).

Unfortunately, we do not yet have a formal proof of denote_compose. There are
two reasons for this absence: Firstly, the compilation process to de Bruijn circuits is
pretty complicated and it can be quite difficult to reason about the results of compi-
lation in a general setting. A more foundational concern relates to our higher-order
abstract syntax: Currently, it is possible to write a circuit that branches on the un-
derlying representation of a variable, producing one circuit if w is represented by 0
and another if w is any other number. This makes it difficult to reason parametrically
about programs in general and is discussed in depth by Despeyroux et al. (1995). One
solution, following the Hybrid system (Felty and Momigliano, 2012), is to introduce a
parametricity predicate like their abstr. (This system was recently used by Mahmoud
and Felty (2018) to encode Proto-Quipper (Ross, 2015) and formalize its metathe-
ory.) Another involves making the representation of variables themselves parametric,
thereby preventing the programmer from matching on them.
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If we assume the denote_compose lemma, we get a number of desirable corollaries,
including a characterization of our circuit sequencing function:
Lemma inSeq_correct : ∀ W1 W2 W2 (c' : Box W2 W2) (c : Box W1 W2),

Typed_Box c → Typed_Box c' →
denote_box (inSeq c c') =
compose_super (denote_box g) (denote_box f).

Mathematically, for boxed circuits c and c′, Jc; ; c′K = Jc′K○ JcK. A similar (sketched
but unproven) lemma for parallel composition says that Jc1 ∥ c2K(ρ1⊗ρ2) = (Jc1Kρ1)⊗
(Jc2Kρ2), provided that the dimensions line up:
Fact inPar_correct : ∀ W1 W1' W2 W2' (f : Box W1 W1') (g : Box W2 W2') (safe

: B)
(ρ1 : Square ⟦(2^W1⟧)) (ρ2 : Square ⟦(2^W2⟧)),
Typed_Box f → Typed_Box g →
WF_Matrix ⟦(2^W1⟧) ⟦(2^W1⟧) ρ1 →
WF_Matrix ⟦(2^W2⟧) ⟦(2^W2⟧) ρ2 →
denote_box safe (inPar f g) (ρ1 ⊗ ρ2) =
(denote_box safe f ρ1 ⊗ denote_box true g ρ2).

Note that this statement is narrower than we would like it to be, in that it re-
quires the input matrix to the product of two non-entangled states. Really, we would
like to write something of the form Jc1 ∥ c2K = Jc1K ⊗ Jc2K, for a tensor product that
corresponds to the tensor product on unitary matrices. However, our representation
of superoperators as simple functions from matrices to matrices limits us from intro-
ducing such an operator. This suggests implementing alternative representations of
of superoperators, such as the Choi or Stinespring representations (Watrous, 2018,
Section 2.2), that have additional structure that we could exploit. These could also
aid us in proving the operator-sum decomposition theorem of the previous section.

6.3 Future Work on Qwire’s Metatheory
We have additional ambitions for Qwire’s metatheory. One core part of that involves
typing our de Bruijn circuits. We have defined a notion of typed DeBruijn_Circuits
in the Qwire development. However, we haven’t shown that every well-typed HOAS
circuit compiles to a well-typed de Bruijn (DB) circuit, nor have we shown that well-
typed DB circuits correspond to valid superoperators. Instead, we leapfrogged typed
de Bruijn circuits in the previous section by directly showing that well-typed HOAS
circuits compile to valid superoperators.

If we can already prove that HOAS circuits correspond to valid superoperators,
why do we want a notion of well-typed de Bruijn circuits? Mostly because DB cir-
cuits closely resemble the “quantum instruction set” programs written in languages
like QUIL (Smith et al., 2016) and OpenQASM (Cross et al., 2017). As we will discuss
in Section 11.2, Dong-Ho Lee’s existing compiler from Qwire to OpenQASM goes
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directly through our de Bruijn circuits. We would also like to convert OpenQASM
and QUIL programs to Qwire programs, allowing us to typecheck and verify circuits
generated by a variety of quantum programming languages. Translating these pro-
grams to de Bruijin circuits would substantially simplify this process. However, this
requires us to have a procedure for typechecking de Bruijin circuits and proofs that
well-typed de Bruijin circuits correspond to valid superoperators. We leave this for
future work.
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Chapter 7

Verifying Quantum Programs

We can now move on to the other goal of our thesis: formal verification of quantum
programs. This verification can take a number of forms, from low-level checks that a
given circuit produces the right output matrix to high level specifications of program
properties, generally as functions from matrices to matrices. In this section, we will
begin with the simplest forms of verification and move on to more complicated forms.

7.1 Verifying Matrices
7.1.1 Tossing Coins
From a conceptual standpoint, the easiest type of circuit to verify is a closed circuit,
a circuit with no input. In this case, we can fully specify the correctness of the circuit
in terms of the density matrix corresponding to its output.

For example, consider a simple coin flip circuit:
Definition coin_flip : Box One Bit :=
box () ⇒ meas $ H $ init0 $ (). ∣0⟩ H meas

This circuit should output ∣1⟩ (corresponding to heads) with one-half probability
and otherwise return ∣0⟩. We can encode this property in the density matrix

(
1
2 0
0 1

2

)

where the one-half in the top left corresponds to the probability of measuring ∣0⟩.
The proof of this property is quite simple, consisting of simply unfolding defini-

tions and computing, using our matrix_denote, Msimpl and solve_matrix tactics from
Chapter 9.
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7.1.2 Teleport
On occasion we can write similar proofs about open circuits: for instance, the teleport
example from Chapter 2.

Here is the code for teleport
Definition teleport :=

box q ⇒
let (a,b) ← bell00 $ () ;
let (x,y) ← alice $ (q,a) ;
bob $ (x,y,b).

and the lemma we desire to prove about it:
Lemma teleport_eq : teleport ≡ id_circ.

This says that the denotation of teleport is identical to the denotation of our identity
circuit.

We could also write this out more explicitly as
Lemma teleport_eq': ∀ (ρ : Density 2),

WF_Matrix ρ → JteleportK ρ = ρ.

That is, for any input matrix ρ corresponding to a one-qubit quantum state, teleport-
ing ρ returns ρ.

Given that teleport takes an input qubit, it might seem difficult to use the tech-
nique above. In the one-qubit case, at least, this happens not to be true. We can
rewrite our input matrix as simply

(ρ0,0 ρ0,1
ρ1,0 ρ1,1

)

and treat this as a concrete matrix in our computation.
In practice, the only difficulty in proving teleport_eq lies in the slowness of our

matrix multiplier and the fact that we are left to prove 2∗(2∗( 1√
2
∗( 1√

2
∗ρx,y)∗1

2)) = ρx,y
(for each possible x, y ∈ {0,1}) after our solver has run. The first emphasizes the
difficulty of multiplying abstract matrices, though this could be helped by faster
matrix multiplication algorithms. The second obstacle is due to the limitations of
our automation techniques in dealing with square roots, though these solvers could
potentially be strengthened. In any case, the proof is easily completed manually.

We can also verify the correctness of a teleportation circuit using dynamic lifting,
which more accurately models the intended protocol. Here Bob receives two boolean
values, which he uses to decide how to modify his qubit
Definition bob_distant (u v : B) : Box Qubit Qubit :=

box b ⇒
let b ← (if v then X else id_circ) $ b;
let b ← (if u then Z else id_circ) $ b;
output b.
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Figure 7.1: The superdense coding protocol with boolean inputs

and teleport provides those booleans via lifting:
Definition teleport_distant : Box Qubit Qubit :=

box q ⇒
let (a,b) ← bell00 $ () ;
let (x,y) ← alice $ (q,a) ;
lift (u,v) ← (x,y) ;
bob_distant u v $ b.

Gratifyingly, the statement and proof of teleport_distant are identical to those
for teleport.
Lemma teleport_distant_eq : teleport_distant ≡ id_circ.

The superdense coding algorithm can be thought of as teleportation in reverse:
Here Bob uses a qubit, along with an entangled pair, to transmit two bits of informa-
tion to Alice. (The bob and alice circuits are identical to those in the teleportation ex-
ample.) We show the version with boolean inputs (corresponding to teleport_distant
) here:
Definition superdense_distant (b1 b2 : B) : Box One (Bit ⊗ Bit) :=

box_ () ⇒
let_ (a,b) ← bell00 $ ();
let_ q ← bob_distant b1 b2 $ b;
alice $ (q,a).

The proof of superdense coding is easier than our teleportation proofs since the
math is simpler, allowing us to complete the proof using our automation tactics:
Lemma superdense_distant_eq : ∀ b1 b2,Jsuperdense_distant b1 b2K I1 = bools_to_matrix [b1; b2].
Proof.

intros b1 b2.
specialize (WF_bools_to_matrix ([b1;b2])) as WF.
destruct b1, b2; matrix_denote; Msimpl; solve_matrix.

Qed.

Here bools_to_matrix converts the boolean inputs into their corresponding density
matrix.
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7.1.3 Deutsch’s Algorithm
Next, we verify an implementation of a classic algorithm from the the quantum com-
puting literature, Deutsch’s algorithm (Deutsch, 1985; Cleve et al., 1998). Deutsch’s
Problem presents the programmer with a function f ∶ {0,1} → {0,1} and asks her to
determine whether the function is constant or not. In the classical case, this obviously
requires that we query the function on both 0 and 1. Deutsch’s algorithm, as modified
by Cleve et al., solves this on a quantum computer by using a single query. First,
however, we must guarantee that f corresponds to a unitary transformation. We use
a standard trick to transform f into a Uf , which is guaranteed to be unitary:

Uf(x⊗ y) = x⊗ (y ⊕ f(x))

That is, Uf maintains the state of the input qubit and puts the result of f(x) onto
the second qubit in the form of y ⊕ f(x).

We can now recall Deutsch’s algorithm:
Definition deutsch Uf :
Box One Bit :=
box () ⇒
let x ← H $ init0 $ ();
let y ← H $ init1 $ ();
let (x,y) ← Uf $ (x,y);
let () ← discard $ meas $ y;
meas $ H $ x.

0

1

H

H
Uf

H meas

meas

Here are the two statements we would like to prove about Deutsch’s algorithm:
Lemma deutsch_constant : ∀ f, constant f →
⟦deutsch (fun_to_box f)⟧ I1 = ∣0⟩⟨0∣.

Lemma deutsch_balanced : ∀ f, balanced f →
⟦deutsch (fun_to_box f)⟧ I1 = ∣1⟩⟨1∣.

We will first give an informal proof of the algorithm’s correctness. In the first case,
if f is constant then either f(x) = 0 or f(x) = 1. This makes Uf the identity matrix,
since y ⊕ 0 = y, or I2 ⊗X, since y ⊕ 1 = ¬y. These sub-cases are trivial because our
two qubits are never entangled, since I4 = I2⊗ I2, and H(H ∣0⟩) = ∣0⟩. In the balanced
case, either f(x) = x or f(x) = 1 − x. In the first of these, Uf is a CNOT , negating
y whenever x is 1. In the second, Uf is a reverse-CNOT that negates y if x is 0.
Either way, x and y will be entangled such that measuring y affects x, putting it into
the desired ∣0⟩ − ∣1⟩ or ∣1⟩ − ∣0⟩ state. Applying a Hadamard yields ∣1⟩ or − ∣1⟩, and
measuring strips off any minus sign.

In our Coq proof, we can simply do case analysis on f true and f false, imme-
diately deriving a contradiction if f is not constant/balanced. Our fun_to_box con-
structs the corresponding boxed circuit for us, so we only have to reduce the circuit
to its denotation and compute the result. From there, it only takes a bit of arithmetic
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Fixpoint coin_flips_lift (n : N) : Box One Bit :=
box () ⇒
match n with
| 0 ⇒ new1 $ ()
| S n' ⇒ lift x ← coin_flip $ ();

if x then coin_flips_lift n' $ ()
else new0 $ ()

end.

Figure 7.2: Our lifted coin flips circuit.

reasoning to show that the qubit is in the desired basis state.

7.2 Matrix Families and Induction
7.2.1 Many Coins
The examples above might lead the reader to believe that number crunching will
suffice to prove all of our algorithms correct or, worse, that Qwire isn’t up to the
task of verifying families of circuits or more abstract circuits. Neither is true.

We first address families of circuits parameterized by natural numbers. Recall our
coin_flips_lift circuit from Section 5.6:
Fixpoint coin_flips_lift (n : N) : Box One Bit :=

box () ⇒
match n with
| 0 ⇒ new1 $ ()
| S n' ⇒ lift x ← coin_flip $ ();

if x then coin_flips_lift n' $ ()
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else new0 $ ()
end.

This circuit flips a coin up to n times, stopping and returning tails (∣0⟩) if it ever
lands tails. If all n tosses come up heads, it returns heads.

We would like to prove that that this circuit simulates a biased coin that returns
heads with probability 1

2n . This is trivially encoded in the biased_coin matrix

(1 − bias 0
0 bias

)

with bias set to 1
2n .

We now want to prove that the circuit’s denotation matches its specification:
Lemma flips_lift_correct : ∀ n, Jcoin_flips_lift nK 'I_1 = biased_coin (1/

2^n).

Given that coin_flips has a simple recursive definition, it is only natural to prove
its correctness using induction. The base case (n = 0) simply consists of proving that

(0 0
0 1
) = (1 −

1
20 0

0 1
20
)

which is simple arithmetic.
In the inductive case, the denotation of coin_flips_lift (n+1) reduces to the

following formula, simplified for readability:
∣0⟩⟨0∣ × (hadamard × (∣0⟩ × I1 × ⟨0∣) × hadamard) × ∣0⟩⟨0∣ .+Jcoin_flips_lift nK (⟨1∣ (hadamard × (∣1⟩ × I1 × ⟨1∣) × hadamard) × ∣1⟩)

Unfortunately, our inductive hypothesis fails us here: ⟨1∣ (H×(∣1⟩×I1×⟨1∣)×H)×∣1⟩
is not the matrix (1), in fact, it is (12). This forces us to prove a more general theorem:

Lemma flips_lift_correct_gen : ∀ (n:N) (p:C),Jcoin_flips_lift nK (p .* I1) = p .* biased_coin (1/2^n).

In this case, coin_flips_lift (n+1) reduces to
∣0⟩⟨0∣ × (hadamard × (∣0⟩ × (p * I1) × ⟨0∣) × hadamard) × ∣0⟩⟨0∣ .+Jcoin_flips_lift nK (⟨1∣ (hadamard × (∣1⟩ × (p * I1) × ⟨1∣) × hadamard) × ∣1⟩)

and we can rewrite via our inductive hypothesis, obtaining
∣0⟩⟨0∣ × (hadamard × (∣0⟩ × (p * I1) × ⟨0∣) × hadamard) × ∣0⟩⟨0∣ .+
(p/2) .* biased_coin (1/2^n)

It is then easy to show that this simplifies to

p ∗ (1 −
1

21+n 0
0 1

21+n
) .
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We can then apply this lemma to the special case where p = 1, giving us our
desired result.

7.3 Algebraic Reasoning about Circuits
7.3.1 A Unitary and Its Adjoint
For many circuits, number crunching or even induction won’t be enough.

Consider the following simple circuit, which composes an arbitrary unitary gate
with its adjoint:

Definition unitary_adjoint {W} (U : Unitary W)
: Box W W :=
box p ⇒ adj U $ U $ p.

U U †

The function adj takes in a unitary gate and returns its adjoint:
Fixpoint adj {W} (U : Unitary W) : Unitary W :=

match U with
| R_ φ ⇒ R_ (- φ)
| ctrl U' ⇒ ctrl (adj U')
| bit_ctrl U' ⇒ bit_ctrl (adj U')
| U' ⇒ U'
end.

Note that most of our unitaries are their own adjoints. We could also define adj as
a constructor for unitaries, as we did in earlier versions of Qwire, but that would
complicate proofs about our unitary gate set.

Clearly, we cannot prove that unitary_adjoint is the identity by simply multi-
plying matrices: U here can be any unitary gate on any number of wires. Instead, we
have to reduce the goal to something of the form

Jadj UK × JUK × ρ × Jadj UK × JUK,
show that the denotation of Jadj UK is JUK†, and then use the fact (proved in Chapter 6)
that the denotation of every unitary gate is a unitary matrix to replace JUK† × JUK with
the identity matrix.

Hence, proving a simple fact about unitary gates requires careful management of
the goal and the application of lemmas from across the Qwire development.

We have yet to use this technique to prove properties of complex circuits, but we
suspect that the correctness proof for the quantum fourier transform (or QFT) will
be similarly algebraic. Here is the statement of that theorem for the basis qubits,
written out mathematically:

JqftK n ∣x⟩ = 1√
2n

2n−1
∑
y=0

e
2πixy
2n ∣y⟩
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7.4 Equational Rewriting
One of the more powerful techniques for reasoning about circuit behavior and opti-
mizing those circuits is equational reasoning. Using a set of basic circuit identities,
we could rewrite Qwire circuits, shrinking them and making them easier to run on
a real-world quantum computer. One common identity (a unitary followed by its ad-
joint is equal to the identity) is given in Section 7.3.1. Here, we present some other
useful transformations, drawn from Staton’s (2015) equational theory for quantum
computation.

Rather than negate a qubit and then measure it, we can always measure the qubit
and then negate it. We can represent this as the equivalence of the following circuits:

meas

Definition X_meas :=
box q ⇒ meas $ X $ q.

meas

Definition meas_NOT :=
box q ⇒ BNOT $ meas $ q.

BNOT here is simply the classical (bit-valued) NOT gate.
We can prove this by crunching matrices, but it also proves to be straightforward

algebraically: The denotation of X is equal to the denotation of BNOT and commutes
with measurement. Many of the equalities in this section will be similarly easy to
prove via computation or matrix rewriting.

The equality of the following two circuits is obvious in the classical setting but less
intuitive in the presence of entanglement, where measurement may disturb multiple
qubits:

U meas

Definition U_meas_discard U :=
box q ⇒ discard $ meas $ U $ q.

meas

Definition meas_discard :=
box q ⇒ discard $ meas $ q.

This says that applying a unitary to a qubit and then measuring and discarding it
is the same as simply measuring and then discarding the qubit. We prove the equality
of these circuits computationally.

A number of additional equalities drawn from Staton’s theory are available in the
file Equations.v in the Coq development.

Our rewriting system should also account for dynamic lifting and optimize around
it when called for. The following dynamically lifted circuit with is equal to the identity
circuit on one Bit:
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Definition lift_new : Box Bit Bit :=
box b ⇒
lift x ← b;
new x $ ().

Here, new x is new1 when x is true and, otherwise, new0.
While we have a small library for rewriting circuits, an optimizing compiler is still

a work-in-progress. Substantial work has gone into rewriting libraries for quantum
circuits, most notably using the ZX-calculus (Coecke and Duncan, 2008; Backens,
2014) and the related Quantomatic tool (Kissinger, 2011). This tool faces two chal-
lenges, in that ZX graphs are more expressive than quantum circuits, and its rewrite
rules are not directed, making it hard to write a terminating procedure for shrink-
ing circuits. A recent paper by Fagan and Duncan (2018) makes some headway on
these issues, but we have yet to address the second in the Qwire setting. Fortu-
nately, Qwire circuits correspond precisely to valid quantum circuits, so we don’t
have to convert between representations; however, graphs may well be more amenable
to rewriting than sequences of gate applications. This form of rewriting would be a
significant step forward for automated circuit optimization and motivates the need
for compositionality lemmas of the style proposed in Section 6.2).
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Chapter 8

Reversibility

8.1 Ancillae and Assertions
Many quantum algorithms rely heavily on quantum oracles, classical programs ex-
ecuted inside quantum circuits. Toffoli (1980) proved that any classical, boolean-
valued function f(x) can be implemented as a unitary circuit fu satisfying fu(x, z) =
(x, z ⊕ f(x)). Toffoli’s construction for quantum oracles is used in many quantum
algorithms, such as the modular arithmetic of Shor’s algorithm (1999). As a concrete
example, Figure 8.1 shows quantum circuits that implement the boolean functions
and (∧) and or (∨).

Unfortunately, Toffoli’s construction introduces significant overhead. Consider a
circuit meant to compute the boolean formula (a ∨ b) ∧ (c ∨ d). The circuit needs
two additional scratch wires, or ancillae, to carry the outputs of (a ∨ b) and (c ∨ d),
as seen in Figure 8.2. The annotation 0 at the start of a wire means that qubit is
initialized in the state ∣0⟩. When constructed in this naive way, the resulting circuit
no longer corresponds to a unitary transformation and cannot be safely used in a
larger quantum circuit.

The solution is to uncompute the intermediate values a ∨ b and c ∨ d and then
discard them at the end of the quantum circuit (Figure 8.3). The annotation 0 at
the end of a wire is an assertion that the qubit at that point is in the zero state, at
which point we can safely discard it without affecting the remainder of the state. (If
we measured and discarded a non-zero qubit, we would affect whatever qubits it was

a a

b b

z z ⊕ (a ∧ b)

a a

b b

z z ⊕ (a ∨ b)

Figure 8.1: Quantum oracles implementing the boolean ∧ and ∨. The ⊕ gates represent
negation, and ● represents control.
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a a

b b

0 a ∨ b
c a

d b

0 c ∨ d
z z ⊕ ((a ∨ b) ∧ (c ∨ d))

Figure 8.2: An non-unitary quantum oracle for (a ∨ b) ∧ (c ∨ d)

a a

b b

0 0

c a

d b

0 0

z z ⊕ ((a ∨ b) ∧ (c ∨ d))

Figure 8.3: A unitary quantum oracle for (a ∨ b) ∧ (c ∨ d) with ancillae

entangled with.)
How can we verify that such an assertion is actually true? We cannot dynamically

check the assertion, since we can only access the value of a qubit by measuring it,
thereby collapsing the qubit in question to a 0 or 1 state. However, we can statically
reason that the qubit must be in the state ∣0⟩ by analyzing the circuit semantics.

The claim that a qubit is in the 0 state is a semantic assertion about the behavior
of the circuit. Unfortunately, this makes it hard to verify—computing the semantics
of a quantum program is computationally intractable in the general case. Circuit
programming languages often allow users to make such assertions but not to verify
that they are true. For example, Quipper (Green et al., 2013a) allows programmers
to make assertions about the state of ancillae, but these assertions are never checked.
Likewise, in Q# (Svore et al., 2018) the assertion will be checked by a simulator but
cannot be checked when a program is run on a quantum computer. Hence, when the
qubit is reused, a common use for ancillae which Q# emphasizes, it may be in the
wrong state. The QCL quantum circuit language (Ömer, 2005) provides a built-in
method for creating reversible circuits from classical functions, but the programmer
must trust this method to safely manage ancillae. In a step in the right direction, the
ReV erC compiler (Amy et al., 2017) for the (non-quantum) reversible computing
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language Revs (Parent et al., 2017) provides a similar approach to compilation and
verifies that it correctly uncomputes its ancilla. However, other assertions in Revs
that a wire is correctly in the 0 state are ignored if they cannot be automatically
verified.

In this chapter, we develop verification techniques for safely working with ancillae.
Our approach allows the programmer to discard qubits that are in the state ∣0⟩ or
∣1⟩, provided that she first formally proves that the qubits are in the specified state.
Inspired by the ReV erC compiler (Amy et al., 2017), we also provide syntactic
conditions that the programmer may satisfy to guarantee that her assertions are true.
However, our quantum circuits do not need to match this syntactic specification: a
programmer may instead manually prove that her circuit safely discards qubits using
the denotational semantics of the language. This gives the programmer the flexibility
to use ancillae where the proofs of such assertions are non-trivial.

This chapter makes the follow core contributions:

• We extend Qwire with assertion-bearing ancillae.

• We give semantic conditions for the closely related properties of (a) when a
circuit is reversible and (b) when a circuit contains only valid assertions about
its ancillae.

• We provide syntactic conditions that guarantee the correctness of these asser-
tions for common use-cases.

• We implement a compiler that transforms boolean expressions into reversible
Qwire circuits and prove its correctness.

• We show how this compilation can be used perform quantum arithmetic via a
quantum adder.

We should note that the results of this chapter have not yet been fully verified
in Coq. In particular, our section on syntactic guarantees for circuits (Section 8.3)
describes a number of lemmas that have mostly been sketched out in Coq or proved
based on admitted lemmas. Our section on oracles also admits the denotation of
two functions that apply CNOT and Toffoli gates to wires based on their positions
within the circuit (as in “wire number 7”) instead of referencing named patterns.
More broadly, this chapter assumes the correctness of two important lemmas from
Section 6.2: compose_correct and inPar_correct, which say that the denotation of
circuits arranged in sequence and in parallel correspond to functional composition
and the tensor product, respectively. The lemmas assumed in this chapter (excluding
the lemmas of Section 8.3) are summarized in Table 8.1.
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Assumption Description
denote_compose The composition of circuits is equal to the compo-

sition of their denotations (Section 6.2)
inPar_correct Gives the denotation of circuits composed in parallel
valid_ancillae_box_equal Our two notations of assertion validity are equiva-

lent
valid_ancillae_unbox Relates the validity of assertions on boxed and un-

boxed circuits
[gate]_at_spec Describes the denotation of the [gate]_at [indices]

circuit, which applies a gate to the given indices
ancilla_free_[gate]_at [gate]_at has no ancillae
ancilla_free_seq The composition of two ancilla free circuits has no

ancillae
strip_one_l_out_eq Converting a Box W (One ⊗ W') to a Box W W' preserves

its denotation
strip_one_r_out_eq The same for Box W (W' ⊗ One)

valid_ancillae_box'_equiv Denotationally equivalent circuits must have the
same validity

valid_inSeq The composition of two valid circuits is valid
HOAS_Equiv_inSeq' If c1 ≡ c′1 and c2 ≡ c′2 then c1; ; c2 ≡ c′1; ; c′2

Table 8.1: Assumptions underlying the reversible computing development. The first
two are in Composition.v, the next two are in Ancilla.v, two instances of [gate]
_at_spec are in Oracles.v and the remaining assumptions are in Symmetric.v.

8.2 Safe and Unsafe Semantics
As we saw in Chapters 4 and 5, Qwire’s semantics is given in terms of density
matrices ρ which represent mixed states—distributions over pure quantum states.
These chapters left out an important feature of Qwire, however: Qwire actually
has two semantics, which happen to coincide in the absence of ancillae. The safe
semantics corresponds to an operational model that does not trust assertions, so an
assertx gate first measures the input qubit before discarding the result. The unsafe
semantics assumes that assertions are accurate, so an assertx gate simply discards
its input qubit without measuring it. The two semantics coincide exactly when all
assertions in a circuit are accurate, in which case we call the circuit valid.

We will briefly remind the reader of the denotation of Qwire circuits (without
padding) along with the safe denotation of assertx:
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denote_safe U ρ = JUKρJUK†

denote_safe init0 ρ = ∣0⟩ρ ⟨0∣
denote_safe init1 ρ = ∣1⟩ρ ⟨1∣
denote_safe meas ρ = ∣0⟩ ⟨0∣ρ ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣ρ ∣1⟩ ⟨1∣

denote_safe {discard, assert0, assert1} ρ = ⟨0∣ρ ∣0⟩ + ⟨1∣ρ ∣1⟩

Under the safe semantics, the assertions assert0 and assert1 are treated as a
measurement followed by a discard. This is semantically the same as the denotation
of discard, except that discard is guaranteed by the type system to only throw away
a classically valued bit. This operation on qubits is safe even if the qubit is in a
superposition of ∣0⟩ and ∣1⟩, due to the implicit measurement.

The unsafe semantics is the same as the safe semantics, except for assert0 and
assert1:

denote_unsafe assert0 ρ = ⟨0∣ρ ∣0⟩
denote_unsafe assert1 ρ = ⟨1∣ρ ∣1⟩

It should be immediately clear why this is unsafe: if ρ isn’t in the zero state (in
the first case), then an assertion produces a density matrix with a trace less than 1.
Operationally, this corresponds to the instruction “throw away this qubit in the zero
state,” which is quantum-mechanically impossible in the general case. However, this
semantics corresponds to the intended meaning of assertx when we know the assertion
is true. It also ensures that the composition of initx with assertx is equivalent to
the identity, which allows us to optimize away qubit initialization and discarding.

We can now define what it means for the ancilla assertions in a circuit to be valid.
Definition valid_ancillae W (c : Circuit W) : P :=

(denote c = denote_unsafe c).

An equivalent definition states that the unsafe semantics preserves the trace of its
input, which is always 1, and therefore maps it to a total probability distribution.
Definition valid_ancillae' W (c : Circuit W) : P :=
∀ ρ, Mixed_State ρ → trace (denote_unsafe c ρ) = 1.

The second definition follows from the first because the safe semantics is trace pre-
serving. The first follows from the second since denote_unsafe c ρ corresponds to a
sub-distribution of denote_safe c ρ. If its trace is one then they must represent the
same distribution.

These two definitions precisely characterize what it means for circuits to have
always correct assertions. For brevity, we call such circuits valid. In the next section,
we define syntactic conditions that are sufficient but not necessary for validity. Pro-
grammers will often write syntactically valid circuits like those produced by compile
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function in Section 8.4), but when needed the semantic definition of validity is still
available.

An important property related to the validity of a circuit is its reversibility. We say
that c and c' are equivalent, written c ≡ c', if both their safe and unsafe denotations are
equal. (If c and c' are valid, this is equivalent to denote c = denote c', but otherwise
it is a stronger claim.) Reversibility says that a circuit has a left and right inverse:
Definition reversible {W1 W2} (c : Box W1 W2) : P :=

(∃ c', c' ;; c ≡ id_circ) ∧ (∃ c', c ;; c' ≡ id_circ)

In Section 8.4, the compiler produces circuits that are their own inverses:
Definition self_inverse {W} (c : Box W W) : P := c ;; c ≡ id_circ.

We can now show that in any reversible circuit all the ancilla assertions hold.

Lemma 8. If c is reversible, then it is valid.

Proof. Let c' be c’s inverse. By the second definition of validity, it suffices to show
that the trace of denote_unsafe c ρ is equal to 1 for every initial mixed state ρ. We
know that the trace of
denote_unsafe id_circ ρ is 1; hence,

1 = trace (denote_unsafe (c;;c') ρ)
= trace (denote_unsafe c' (denote_unsafe c ρ))

Because the unsafe semantics is trace-non-increasing, it must be the case that the
trace of denote_unsafe c ρ is 1 as well.

8.3 Syntactically Valid Ancillae
Let c be a circuit made up only of classical gates: the initialization gates, the not gate
X, the controlled-not gate CNOT, and the Toffoli gate T. Let c′ be the result of reversing
the order of the gates in c and swapping every initialization with an assertion of the
corresponding boolean value. Then every assertion in c; ; c′, where semicolons denote
sequencing, is valid.

Unfortunately, every circuit of this form is also equivalent to the identity circuit,
so as a syntactic condition of validity, this is much too restrictive. In practice, the
quantum oracles discussed in the introduction are mostly symmetric, but they in-
troduce key pieces of asymmetry to compute meaningful results. In ReVerC, this
construction is called the restricted inverse; QCL (Ömer, 2005) and Quipper (Green
et al., 2013a) take similar approaches.

Let c be a circuit with an equal number of input and output wires whose qubits
can be broken up into two disjoint sets: the first n qubits are called the source, and the
last t qubits are called the target. That is, c : Box (n+t ⊗ Qubit) (n+t ⊗ Qubit). The
syntactic condition of source symmetry on circuits guarantees that c is the identity on
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all source qubits. In addition, it guarantees that assertions are only made on source
qubits with a corresponding initialization.

A classical gate acts on the qubit i if it affects the value of that qubit in anm-qubit
system: X acts on its only argument, CNOT acts on its second argument (the target),
and Toffoli acts on its third argument.

The property of source symmetry on circuits is defined inductively as follows:

• The identity circuit is source symmetric.

• If g is a classical gate and c is source symmetric, then g ;; c ;; g is source sym-
metric.

• If g is a classical gate that acts on a qubit in the target and c is source symmetric,
then both g ;; c and c ;; g are source symmetric.

• If c is source symmetric and i is in the source of c, then
init_at b i ;; c ;; assert_at b i is source symmetric.

The key property of a source symmetric circuit is that it does not affect the value
of its source qubits. We say that a circuit c is a no-op at qubit i if, when initialized
with a boolean b, the qubit is still equal to b after executing the circuit. We could
define this as JcK(ρ1 ⊗ ∣b⟩ ⟨b∣ ⊗ ρ2) = ρ′1 ⊗ ∣b⟩ ⟨b∣ ⊗ ρ′2 for some ρ1, ρ2, ρ′1, ρ′2, but this
would require ρ1 and ρ2 (and ρ′1 and ρ2’) to be separable, which is an unnecessary
restriction. Instead, we use the valid_ancillae predicate and say if we initialize an
ancilla in state x at i, apply b, and then assert that i = x, our assertion will be valid:
Definition noop_on (m k : N) (c : Box (Qubits (1 + m)) (Qubits (1+m)) : P

:=
∀ b, valid_ancillae (init_at b i ;; c ;; assert_at b i).

We similarly define a predicate, noop_on_source n, that says that a given circuit is a
no-op on each of its first n inputs.

These inductive definitions allow us to state a number of closely related lemmas
about symmetric circuits:

Lemma 9. If the classical gate g acts on the qubit k and i ≠ k, then g is a no-op on
i.

Lemma 10. Let c be a circuit such that c ;; assert_at b i is a valid assertion.
Then c ;; assert_at b i ;; init_at b i ≡ c.

b bc c

Lemma 11. If c and c' are both no-ops on qubit i, then c ;; c' is also a no-op on
qubit i.
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Conjecture 1. If c is source symmetric, then it is a no-op on its source.

These lemmas have been admitted, rather than proven, in the Coq development
(Symmetric.v). Conjecture 1 is labeled as a conjecture rather than a lemma, since we
do not yet have a paper proof of the statement. It may be the case that we need to
strengthen our definition of no-op for this conjecture to hold.

Since all ancillae in a source symmetric circuit occur on sources, we can prove
from the statements above that source symmetric circuits are valid.

Theorem 10. If c is source symmetric, then all its assertions are valid.

Source symmetric circuits also satisfy a more general property: they are reversible.
The inverse of a source symmetric circuit is defined by induction on source sym-

metry:

• The inverse of the identity circuit is the identity;

• The inverse of g ;; c ;; g is g ;; c−1 ;; g;

• The inverses of c ;; g and g ;; c are g ;; c−1 and c−1 ;; g; and

• The inverse of init_at b i ;; c ;; assert_at b i is init_at b i ;; c−1 ;; assert_at
b i.

Clearly, the inverse of any source symmetric circuit is also source symmetric, and the
inverse is involutive, meaning (c−1)−1 = c.

Theorem 11. If c is source symmetric, then c−1 ;; c is equivalent to the identity
circuit.

Proof. By induction on the proof of source symmetry. The only interesting case is the
case for ancilla, showing
init_at b i ;; c−1 ;; assert_at b i ;; init_at b i ;; c ;; assert_at b i ≡

id_circ.

From Theorem 10 we know that the circuit init_at b i ;; c−1 ;; assert_at b i is valid.
Then, by Lemma 10, we know that init_at b i ;; c−1 ;; assert_at b i;; init_at b i
is equivalent to init_at b i ;; c−1. Thus the goal reduces to init_at b i ;; c−1 ;; c ;;
assert_at b i. This is equivalent to the identity by the induction hypothesis plus the
fact that init_at b i ;; assert_at b i is the identity.

We can now say that any circuit followed by its inverse is valid. But this theorem
is easily extensible. For instance, we can add the following to our inductive definition
of symmetric, and the theorem will still hold:

• If c is source symmetric, and c ≡ c', then c' is source symmetric.
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This extension allows us to use existing (semantic) equivalences to satisfy our (syn-
tactic) source symmetry predicate, which in turn proves the semantic property of
validity. For example, because teleportation is semantically equivalent to the identity
circuit, we know trivially that it is valid, even though it is not source symmetric. The
Coq development provides many useful compiler optimizations in the file Equations.v
that can now be used in establishing source symmetry.

8.4 Compiling Oracles
Now that we have syntactic guarantees for circuit validity, we can consider a compiler
from boolean expressions to source-symmetric circuits, producing the quantum oracles
described in the introduction to this chapter. The resulting circuits are all source
symmetric, so it follows from the previous section that they are valid.

We begin with a small boolean expression language, borrowed from Amy et al.
(2017), with variables, constants, negation (¬), conjunction (∧), and exclusive-or (⊕).

b ∶∶= x ∣ true ∣ false ∣ ¬b ∣ b1 ∧ b2 ∣ b1 ⊕ b2

The interpretation function JbKf takes a boolean expression b and a valuation
function f : Var → B and returns the value of the boolean expression with the variables
assigned as in f.

The compiler takes a boolean expression b and a map Γ from the variables of b to
the wire indices1. The resulting circuit compile b Γ has |Γ|+1 qubit-valued input and
output wires, where |Γ| is the number of variables in the scope of b.

The compiler uses init_at, assert_at, X_at, CNOT_at, and Toffoli_at circuits,
each of which applies the corresponding gate to the given index in the list of n wires.
We show the compile function below.

1In the Coq development, these maps are represented by linear typing contexts.
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0 0
0 0

compile
b1 Γ

compile
b2 Γ

compile
b2 Γ

compile
b1 Γ

Figure 8.4: Compiling b1 ∧ b2 on 3 qubits. The top wire is the target.

Fixpoint compile (b : bexp) (Γ : Ctx) : Square_Box (S ⟦(Γ⟧) ⊗ Qubit) :=
match b with
| b_t ⇒ TRUE ∥ id_circ
| b_f ⇒ FALSE ∥ id_circ
| b_var v ⇒ CNOT_at (1 + index v Γ) 0
| b_not b ⇒ init_at true 1 ;;

id_circ ∥ (compile b Γ) ;;
CNOT_at 1 0 ;;
id_circ ∥ (compile b Γ) ;;
assert_at true 1

| b_and b1 b2 ⇒ init_at false 1 ;;
id_circ ∥ compile b1 Γ ;;
init_at false 2 ;;
id_circ ∥ id_circ ∥ compile b2 Γ ;;
Toffoli_at 1 2 0 ;;
id_circ ∥ id_circ ∥ compile b2 Γ ;;
assert_at false 2 ;;
id_circ ∥ compile b1 Γ ;;
assert_at false 1

| b_xor b1 b2 ⇒ init_at false 1 ;;
id_circ ∥ compile b1 Γ ;;
CNOT_at 1 0 ;;
id_circ ∥ compile b1 Γ ;;
id_circ ∥ compile b2 Γ ;;
CNOT_at 1 0 ;;
id_circ ∥ compile b2 Γ ;;
assert_at false 1

end.

We make heavy use of sequencing (;;) and parallel (∥) operators in defining this
circuit. The TRUE case outputs the exclusive-or of true with the target wire, which is
equivalent to simply negating the target wire. Similarly, FALSE reduces to the identity.
The variable case b_var applies a CNOT gate from the variable’s associated wire to
the target, thereby sharing its value.

The AND case (Figure 8.4) is more interesting. We first initialize a qubit in the 0
state and recursively compile the value of b1 to it. We then do the same for b2. We
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apply a Toffoli gate from b1 and b2, now occupying the 1 and 2 positions in our list,
to the target qubit at 0. We then reapply the symmetric functions compile b2 Γ and
compile b1 Γ to their respective wires, returning the ancillae to their original states
and discarding them. We are left with the target wire z holding the boolean value
bz ⊕ (b1 ∧ b2) and |Γ| wires retaining their initial values.

Finally, we have the XOR case. Here we borrow a trick from ReVerC (Amy et al.,
2017) and allocate only a single ancilla instead of the two we used in the AND case.
Instead of calculating (b1 ⊕ b2)⊕ t, where t is the target, we calculate the equivalent
b2 ⊕ (b1 ⊕ t), taking advantage of the associativity and commutativity of ⊕. Hence,
as soon as we’ve computed b1, we can apply a CNOT from b1 to the target and
immediately uncompute b1. This frees up our ancilla, which we then use as a target
for compile b2.

Note that our entire compile circuit is source symmetric, and therefore our asser-
tions are guaranteed to hold by Theorem 10.

We can now go about proving the correctness of this compilation.
Theorem compile_correct : ∀ (b : bexp) (Γ : Ctx) (f : Var → B) (z : B),

vars b ⊆ domain Γ →Jcompile b ΓK (bool_to_matrix t ⊗ basis_state Γ f) =
bool_to_matrix (z ⊕ JbKf) ⊗ basis_state Γ f.

The function basis_state takes the wires referenced by Γ and the assignments of
f and produces the corresponding basis state. This forms the input to the compiled
boolean expression along with the target, a classical qubit in the ∣0⟩ or ∣1⟩ state. The
statement of compile’s correctness says that when we apply Jcompile b ΓK to this basis
state with an additional target qubit, we obtain the same matrix with the result of
the boolean expression on the target. The proof follows by induction on the boolean
expression.

8.5 Quantum Arithmetic in Qwire
In this section, we show how to use the compiler from the previous section to im-
plement a quantum adder, which has applications in many quantum algorithms, in-
cluding Shor’s algorithm. A verified quantum adder is therefore an important step
towards verifying a variety of quantum programs.

The input to an adder consists of two n-bit numbers represented as sequences of
bits x1∶n and y1∶n, as well as a carry-in bit cin. The output consists of the sum sum1∶n
and the carry-out cout.

To begin, consider a simple 1-bit adder that takes in three bits, cin, x, and y, and
computes their sum and carry-out values. The sum is equal to x ⊕ y ⊕ cin, and the
carry is (cin ∧ (x ⊕ y)) ⊕ (x ∧ y). The expressions can be compiled to 4- and 5-qubit
circuits adder_sum and adder_carry, respectively, where the order of qubits is cout,
sum, y, x, and cin.
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Definition adder_sum : Box (4 ⊗ Qubit) (4 ⊗ Qubit) :=
compile ((c_in ∧ (x ⊕ y)) ⊕ (x ∧ y)) (list_of_Qubits 4).

Definition adder_carry : Box (5 ⊗ Qubit) (5 ⊗ Qubit) :=
compile (x ⊕ y ⊕ c_in) (list_of_Qubits 5).

Definition adder_1 : Box (5 ⊗ Qubit) (5 ⊗ Qubit) :=
adder_carry ;; (id_circ ∥ adder_sum).

Here, adder_sum computes the sum of its three input bits and adder_carry computes
the carry, ignoring the result of adder_sum. Semantically, the adder should produce the
appropriate boolean values; the operation bools_to_matrix converts a list of booleans
to a density matrix.
Lemma adder_1_spec : ∀ (cin x y sum cout : B),Jadder_1K (bools_to_matrix [cout; sum; y; x; cin])
= (bools_to_matrix [ cout ⊕ (c_in ∧ (x ⊕ y) ⊕ (x ∧ y));

; sum ⊕ (x ⊕ y ⊕ c_in)
; y; x; cin]).

Next, we extend the 1-qubit adder to n qubits. The n-qubit adder contains two
parts—adder_left and adder_right—defined recursively using padded adder_1 and
adder_carry circuits. The left part computes the sum and carry sequentially from the
least significant bit, initializing an ancilla for the carry in each step. When it reaches
the most significant bit, it computes the most significant bit of the sum and carry-
out using the 1-qubit adder. The right part of the adder uncomputes the carries and
discards the ancillae. The definitions of the circuits are shown below and illustrated
in Figure 8.5.
Fixpoint adder_left (n : N) : Box ((1+3*n) ⊗ Qubit) ((1+4*n) ⊗ Qubit) :=
match n with
| S n' ⇒ (id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_left n')))) ;;

(init_at false (4*n) 0) ;;
(adder_1_pad (4*n'))

end.
Fixpoint adder_right (n : N) : Box ((1+4*n) ⊗ Qubit) ((1+3*n) ⊗ Qubit) :=
match n with
| O ⇒ id_circ
| S n' ⇒ (adder_carry_pad (4*n')) ;;

(assert_at false (4*n) 0) ;;
(id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_right n'))))

end.
Fixpoint adder_circ (n : N) : Box ((2+3*n) ⊗ Qubit) ((2+3*n) ⊗ Qubit) :=
match n with
| O ⇒ id_circ
| S n' ⇒ (id_circ ∥ (id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_left n')))));;

(adder_1_pad (4*n')) ;;
(id_circ ∥ (id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_right n')))))

end.
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cin
x1∶n′
y1∶n′

sum1∶n′

xn
yn

sumn
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x1∶n′
y1∶n′

sum ′1∶n′

xn
yn

sum ′n
c′out

adder_left n′ adder_right n′

adder_1

Figure 8.5: A quantum circuit for the n-adder where n′ = n−1 . The n′ ancillae created
in adder_left are all terminated inside adder_right.

We can now prove the correctness of the n-qubit adder:
Lemma adder_circ_n_spec : ∀ (n : N) (f : Var → B),

let li := list_of_Qubits (2 + 3 * n) inJadder_circ_n nK (ctx_to_matrix li f)
= (ctx_to_matrix li (compute_adder_n n f)).

Like bools_to_matrix above, ctx_to_matrix takes in a context and an assignment
f of variables to booleans and constructs the corresponding density matrix. The
function compute_adder_n likewise takes a function f that assigns values to each
of the 3 ∗ n + 2 input variables and returns a boolean function f ′ representing the
state of the same variables after addition (computed classically). The specification
states that the n-bit adder circuit computes the state corresponding to the function
compute_adder_n for any initial assignment.

Note that the lemma gives a correspondence between the denotation of the circuit
and functional computation on the assignment. This can reduce the time required to
verify more complex arithmetic circuits. A natural next step is to verify the corre-
spondence between our functions on lists of booleans and Coq’s binary representations
of natural numbers, thereby grounding our results in the Coq standard library and
allowing us to easily move between numerical representations.

8.6 Next Steps for Reversible Computation
As noted throughout this chapter, our investigation into reversible computing in
Qwire is a work in progress. The obvious next step for this line of work is to prove
all the outstanding claims in this chapter, which mainly relate to syntactically guar-
anteeing circuit validity. But there are also some natural steps after that.

As the reader may have noticed in the previous section, our verified adder doesn’t
make heavy use of our compile function. Instead, compilation is only used for the base
cases. This is unfortunate, since in principle we should be able to write a complete
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adder in our boolean expression language and then compile that to a circuit. In order
to accomplish this, we would need to add the following features to our bexp language:

1. Pairs would allow us to represent binary numbers, where (true,(true,(false,
true))) could represent 1101 or 13.

2. Projection operators would allow us to extract values from pairs.

3. Let bindings would allow us to reuse sub-circuits for efficiency.

We could also make our bexps dependently typed, which would allow us to associate
bexps with the number of wires entering and exiting the corresponding circuit. We
could even include types for n-bit numbers that correspond to product types. And
naturally, there is much more that we could do with the bexp language, including
adding lambdas, branching, recursion, and other common programming language id-
ioms.

We would also like to optimize our current compiler. Our compile function borrows
a trick from ReVerC (Amy et al., 2017), in that it doesn’t use additional ancilla to
compile exclusive-ors. However, there is a lot of optimization that could potentially
be done, and, given the limitations of today’s quantum computers, it is all worth
doing.

Finally, a recent innovation in the area of quantum computing concerns so-called
dirty ancillae. We call an ancilla “dirty” if it may be initialized in an arbitrary state,
not only ∣0⟩. Häner et al. (2016) show that these can take the place of our “clean”
ancillae in many quantum circuits, and Q# (Svore et al., 2018) allows us to assert that
a qubit has been returned to its initial state, whatever that state may be. Extending
the work in this paper to verify that dirty ancillae are returned to their initial states
would require substantial additional machinery, however we believe that the payoff
in terms of programming and verification justifies the added effort.
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Chapter 9

Automation

The entire Qwire language makes heavy use of Coq automation tools, particularly
its LTac tactic language and its hint databases. In this chapter, we will look at some
of the more interesting automation in Qwire, with a particular focus on typechecking
and verification.

9.1 Typechecking Circuits
Typechecking Qwire circuits can be a difficult task. Before we delve into the tactics,
let’s review the typing rules from Chapter 5:
Inductive Types_Circuit : OCtx → ∀ {w}, Circuit w → Set :=
| types_output : ∀ {Γ w} {p : Pat w}, Γ ⊢ p :Pat → Γ ⊢ output p :Circ
| types_gate : ∀ {Γ Γ1 Γ1' w1 w2 w} {f : Pat w2 → Circuit w}

{p1 : Pat w1} {g : Gate w1 w2},
Γ1 ⊢ p1 :Pat →
(∀ Γ2 Γ2' (p2 : Pat w2) {pf2 : Γ2' == Γ2 ● Γ},

Γ2 ⊢ p2 :Pat → Γ2' ⊢ f p2 :Circ) →
∀ {pf1 : Γ1' == Γ1 ● Γ},
Γ1' ⊢ gate g p1 f :Circ

| types_lift : ∀ {Γ1 Γ2 Γ w } {p : Pat Bit} {f : B → Circuit w},
Γ1 ⊢ p :Pat →
(∀ b, Γ2 ⊢ f b :Circ) →
∀ {pf : Γ == Γ1 ● Γ2},
Γ ⊢ lift p f :Circ.

Definition Typed_Box {W1 W2 : WType} (b : Box W1 W2) : Set :=
∀ Γ (p : Pat W1), Γ ⊢ p :Pat → Γ ⊢ unbox b p :Circ.

Now let’s try typing a simple circuit, following the derivation in Figure 9.1. That
simplified presentation follows the style of Chapter 4, where each Γi is simply the
singleton context that types pi.

Here is the corresponding Qwire program in our imperative notation.
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Γ1,Γ2 ⊢ (p1,p2)
Γ0,Γ3,Γ4 ⊢ (p0,p3,p4)

Γ0,Γ3,Γ4 ⊢ output (p0,p3,p4)
Γ1,Γ2,Γ0 ⊢ gate (p3,p4) ← CNOT (p1,p2); output (p0,p3,p4)

Figure 9.1: The typing derivation for a simple Qwire program that applies a CNOT
to the last two qubits in a 3-qubit system. We haven’t expanded out the proofs for
typing patterns since they’re trivial.

Definition cnot12 : Square_Box (Qubit ⊗ Qubit ⊗ Qubit) :=
box (p0,p1,p2) ⇒
gate (p3,p4) ← CNOT @(p1,,p2);
output (p0,p3,p4).

Note that we have to box the circuit to create a closed term. We have avoided shad-
owing any variables for ease of presentation.

Let’s walk through a manual proof that cnot12 is well-typed.1 We can begin by
unfolding the definition of Typed_Box, obtaining the following proof state:
∀ (Γ : OCtx) (p : Pat (Qubit ⊗ Qubit ⊗ Qubit)),
Γ ⊢ p :Pat →
Γ ⊢ unbox (box (p0,p1,p2) ⇒
gate (p3,p4) ← CNOT @(p1,,p2);
output (p0,p3,p4)) p :Circ

We now conveniently have an input pattern p, a typing context Γ, and a proof
that Γ types p. We will introduce these into our context and repeatedly invert the
typing judgment, obtaining the following proof state:

p0, p1, p2 : Pat Qubit
Γ2, Γ0, Γ1 : OCtx
V : is_valid (Γ0 ⋓ Γ1 ⋓ Γ2)
V0 : is_valid (Γ0 ⋓ Γ1)
TP0 : Γ0 ⊢ p0 :Pat
TP1 : Γ1 ⊢ p1 :Pat
TP2 : Γ2 ⊢ p2 :Pat
== == == == == == == == == == == == == ==
(Γ0 ⋓ Γ1 ⋓ Γ2) ⊢ (gate_ (p3, p4)← CNOT @(p1,, p2);

output (p0,, p3,, p4))) :Circ

This looks a lot more like our conclusion in Figure 9.1 (though we have cleaned
it up slightly). It’s time to apply a typing rule:

apply types_gate with (Γ := Γ0) (Γ1 := Γ1 ⋓ Γ2); try solve_merge.

There are two worrisome things about this approach. Firstly, we had to explicitly
tell Coq how to break Γ0 ⋓ Γ1 ⋓ Γ2 into one context that would type (p1,, p2) and a

1This is cnot12_WT_manual in Typechecking.v.
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second context that would type the rest of the circuit. We also had to call a tactic,
solve_merge, to discharge an obligation of the form Γ1 ⋓ Γ2 == Γ1 ● Γ2. In this case,
the solution was easy: split gives us the goals Γ1 ⋓ Γ2 = Γ1 ⋓ Γ2, which is trivial,
and is_valid (Γ1 ⋓ Γ2), which follows from our hypothesis V : is_valid (Γ0 ⋓ Γ1 ⋓
Γ2). But this won’t always be so easy, as we will see later.

We now have two goals, corresponding to the second row in Figure 4.2. In that
derivation, the solution to the first ((Γ1 ⋓ Γ2) ⊢ (p1,,p2)) was simple enough that we
didn’t bother writing it; in Coq, it requires another explicit application and call to
solve_merge:

apply types_pair with (Γ1 := Γ1) (Γ2 := Γ2); try solve_merge.

The cases that follow from that actually are trivial for Coq to solve: They consist of
applying our hypotheses TP1 and TP2.

Let’s now take a look at our remaining goal, corresponding to the continuation:
∀ (Γ Γ' : OCtx) (p : Pat (Qubit ⊗ Qubit)),
Γ' == Γ ● Γ0 → Γ ⊢ p :Pat →
Γ' ⊢ (let (p3,p4) ← p; (output (p0,, p3,, p4))) :Circ

Once again, destructing the typing judgment gives us more useful patterns and
contexts:

Γ' ⊢ output (p0,, p3,, p4) :Circ

with Γ' = Γ3 ⋓ Γ4 ⋓ Γ0 and proofs that each Γi types pi in the context.
We can now apply types_output and solve for the remaining patterns. The full

proof is given in Figure 9.2.
Unfortunately, this proof isn’t quite automatic. At several points, we stopped and

manually specified contexts based on our knowledge of how the final proof should look.
On the other hand, this process should be automatic because the typing derivation
is syntax directed. As we see in Figure 9.1., we can fill in this derivation by blindly
applying the appropriate rules from bottom to top, leaving the typing contexts out.
The only challenge, then, is in finding the correct contexts. We can obtain these from
the leaves of the typing derivation, then percolate the typing contexts downwards.

In order to mechanize this strategy, we use Coq’s evars, or existential variables.
An evar acts like a placeholder whose value we can fill in later.2 Using evars, we can
leave some context unspecified until we determine their values at the leaves of the
typing derivation.

We can now present a “more automatic” version of our typing derivation in Fig-
ure 9.3.

Let’s walk through this proof. The first change from the previous proof is that our
call to intros doesn’t specify any names for our variables, instead letting Coq name

2Naturally, this is subject to restrictions. An evar can only be unified with a value that was
in scope at the time it was created. Otherwise, we could use them to prove false statements, like
∃ x, ∀ y, x = y, by replacing x with an evar, introducing y, and then unifying x with y.
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Lemma cnot12_WT_manual : Typed_Box cnot12.
Proof.

unfold Typed_Box, cnot12.
intros Γ p TP. simpl.
dependent destruction TP.
dependent destruction TP1.
(* Give contexts and patterns the correct names *)
rename Γ0 into Γ, Γ1 into Γ0. rename Γ into Γ1.
rename p3 into p1.
rename TP1_1 into TP0, TP1_2 into TP1.
(* Apply gate typing rule *)
apply @types_gate with (Γ := Γ0) (Γ1 := Γ1 ⋓ Γ2); try solve_merge.
- (* types (p1,p2) *)
apply types_pair with (Γ1 := Γ1) (Γ2 := Γ2); try solve_merge.
+ apply TP1. (* types p1 *)
+ apply TP2. (* types p2 *)

- (* types `output (p0, p3, p4)` *)
intros Γ Γ' p M TP.
dependent destruction TP.
apply (@types_output _ _ _ _ eq_refl).
(* types (p0, p3, p4) *)
apply types_pair with (Γ1 := Γ0 ⋓ Γ3) (Γ2 := Γ4); try solve_merge.
+ (* types (p0, p3) *)

apply types_pair with (Γ1 := Γ0) (Γ2 := Γ3); try solve_merge.
* apply TP0. (* types p0 *)
* apply TP3. (* types p3 *)

+ apply TP4. (* types p4 *)
Qed.

Figure 9.2: Manually typechecking cnot12.
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Lemma cnot12_WT_evars : Typed_Box cnot12.
Proof.

unfold Typed_Box, cnot12.
intros; simpl.
invert_patterns.
eapply types_gate.
Focus 1.
eapply @types_pair. (* types (p1, p2) *)

4: eauto. (* types p2 *)
3: eauto. (* types p1 *)
2: monoid. (* unifies ?Γ = Γ1 ⋓ Γ2 *)
1: validate. (* solves is_valid (Γ1 ⋓ Γ2) *)

Focus 2. (* 3 *)
split. (* _ == _ ● _ *)

2: monoid. (* unifies Γ0 ⋓ Γ1 ⋓ Γ2 = Γ1 ⋓ Γ2 ⋓ ?Γ *)
1: validate. (* solves `is_valid (Γ0 ⋓ Γ1 ⋓ Γ2)` *)

Focus 1. (* 2 *)
intros; simpl.
invert_patterns.
eapply @types_output.
Focus 1.

monoid.
Focus 1. (* 2 *)

destruct_merges; subst.
eapply @types_pair.
Focus 4.
eauto. (* types p4 *)

Focus 3.
eapply @types_pair. (* types (p0,p3) *)

4: eauto. (* types p3 *)
3: eauto. (* types p0 *)
2: monoid. (* unifies ?Γ = Γ0 ⋓ Γ3 *)
1: validate. (* solves `is_valid (Γ1 ⋓ Γ2)` *)

Focus 2.
monoid. (* unifies Γ3 ⋓ Γ4 ⋓ Γ0 = Γ0 ⋓ Γ3 ⋓ Γ4 *)

Focus 1.
validate. (* solves `is_valid (Γ1 ⋓ Γ2)` *)

Qed.

Figure 9.3: Typechecking cnot12 using evars.
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them itself. This is because we don’t want to refer to any specific terms or hypotheses
in our proof, since it should be fully automatable. The next line calls invert_patterns.
This corresponds to the dependent destructions in our manual proof, breaking down
complex patterns into bits, qubits, and units, and simultaneously breaking down the
contexts that type them. We can now apply our first typing rule.

Where previously we called apply types_gate and specified values for Γ1 and Γ2,
here we simply call eapply types_gate. This applies the same rule, but instead of
using our specified values for Γ1 and Γ2, it leaves them as evars to be filled in later.
We are left with the following three goals to prove (we have replaced Coq’s generated
names with our own, for readability):
subgoal 1 (ID 1463) is:

?Γ1 ⊢ (p1,,p2) :Pat

subgoal 2 (ID 1464) is:
∀ (Γ Γ' : OCtx) (p : Pat (Qubit ⊗ Qubit)),
Γ' == Γ ● ?Γ2 → Γ ⊢ p :Pat →
Γ' ⊢ (let p3 p4 ← p; (output (p0,, p3,, p4))) :Circ

subgoal 3 (ID 1465) is:
(Γ0 ⋓ Γ1 ⋓ Γ2) == ?Γ1 ● ?Γ2

Here, the structure of our proof changes. We can no longer simply solve our goals
one-by-one, nor can we immediately discharge goals of the form Γ == Γ1 ● Γ2 with a
quick solve_merge. Our second goal cannot be solved without finding a value for ?Γ2,
whereas our third goal needs to find a value for ?Γ1 or ?Γ2 to perform unification.
Hence, we are forced to address the goals in the following order: first, third, and
then second. We use Focus n or n: to address a specific goal whose index may be
decremented during this process.

We won’t dwell on subgoal 1: Its structure completely parallels the structure of
the broader proof. Its outcome is to type (p1,,p2) with the contexts Γ1 and Γ2, thereby
telling Coq that ?Γ1 is Γ1 ⋓ Γ2, which percolates to the other subgoals.

We can now proceed to subgoal 3. It asks us to prove that (Γ0 ⋓ Γ1 ⋓ Γ2) == (
Γ1 ⋓ Γ2) ● ?Γ2, which we can split into its components: is_valid (Γ0 ⋓ Γ1 ⋓ Γ2) and
Γ0 ⋓ Γ1 ⋓ Γ2 = Γ1 ⋓ Γ2 ⋓ ?Γ2. We start with the second case: Our monoid can solve
any valid merge equality that involves a single evar, and here it quickly recognizes
that ?Γ2 must be Γ0. We then call our validate tactic, which checks that Γ0 ⋓ Γ1 ⋓
Γ2 is a valid context. We will discuss the mechanics of monoid and validate shortly.
Note that in this context we could have called monoid and validate in either order
since the is_valid subgoal did not involve any evars. However, it frequently will, so
we take the general practice of calling monoid, which can instantiate an evar first.

Now only subgoal 2 remains, and asks us to typecheck the continuation:
∀ (Γ Γ' : OCtx) (p : Pat (Qubit ⊗ Qubit)),
Γ' == Γ ● Γ0 → Γ ⊢ p :Pat →
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Γ' ⊢ (let p3 p4 ← p; (output (p0,, p3,, p4))) :Circ

We do this in exactly the same way that we typechecked the broader circuit. The
only addition is a call to destruct_merges, which replaces any Γ == Γ1 ● Γ2 in the
hypotheses with Γ = Γ1 ⋓ Γ2 and is_valid Γ, followed by subst, which replaces all
instances of Γ with Γ1 ⋓ Γ2.

We can now present the core of our typecheck tactic:

1. Unfold Typed_Box and the target circuit

2. intros hypotheses

3. invert_patterns

4. destruct_merges

5. econstructor (which calls eapply on the relevant constructor)

(a) typecheck any goal of the form ?Γ ⊢ p :Pat then eauto

(b) Use monoid on any goal of the form Γ0 ⋓ Γ1 = Γ2 ⋓ Γ3 with one evar or
less

(c) Use validate on any goal of the form is_valid exp without evars
(d) Call typecheck on what remains

Note that step (a) must precede (b), which in turn must precede (c) and (d). We
need to typecheck patterns to infer the values of any evars and then use monoid to
instantiate whatever evars remain. We can now present our final proof that cnot12
is well-typed:
Lemma cnot23_WT : Typed_Box cnot12.
Proof.

type_check.
Qed.

Our type_check tactic has some additional functionality not captured by the al-
gorithm above. Since our circuits are highly modular and often included in larger
circuits, we generally want to reuse proofs of typing judgments wherever possible. In
particular, if we compose two circuits together, we should not compute the result in
order to type them; rather, we should use our compose_typing lemma (corresponding
to TypeCircGate in Figure 4.2) and then typecheck the component circuits sepa-
rately. Moreover, if these circuits already have typing proofs, we should apply those
directly. In order to facilitate this practice, we maintain a Coq Hints database, called
typed_db. Whenever a new circuit is typechecked, we can add its proof to typed_db.
Our typechecking tactics always calls out to typed_db before attempting to typecheck
a circuit, speeding up the typechecking process. The typing proofs for higher-order
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functions on circuits, like inPar and inSeq (which compose circuit in parallel and in
sequence), are also added to the database.

We next discuss monoid and validate, which lie at the heart of our typechecking
procedure.

9.1.1 Monoid
Partial Commutative Monoids The structure that underlies the monoid tactic
is called a partial commutative monoid, or PCM for short. Partiality refers to the
fact that some operations may lead to an invalid result, called �. To be precise, our
structure is

{A,⊺,�, ○}

for some set A, obeying the following properties:

a ○ ⊺ = a
a ○ � = �

(a ○ b) ○ c = a ○ (b ○ c)
a ○ b = b ○ a

In our case, ○ corresponds to our merge operation ⋓, ⊺ to the empty context
[] (which can be safely merged with any other context, yielding that context), and
� to Invalid, which results from an attempt to merge two overlapping contexts. A
corresponds to the set of singleton contexts, which we can merge together to form
arbitrary typing contexts. We use this structure to type our circuits, via two tactics:
The monoid tactic shows the equality of two expressions, and the validate tactic
demonstrates disjointness.

The theory of partial commutative monoids (and the special case of nilpotent
commutative monoids, where a ○ a = � if a ≠ ⊺) is explored in more detail in the
Linear Typing Contexts library3 by Jennifer Paykin and this author. Unfortunately,
a thorough exposition of this development is not yet available, though it is discussed
in similar detail to here in Paykin’s thesis (2018). Here we will only focus on the
applications of this structure to typechecking linear circuits.

A PCM Solver Our monoid tactic is based upon the tactic of the same name in
Adam Chlipala’s “Certified Programming with Dependent Types” (Chlipala, 2013)
for solving monoidal equalities using reflection. A similar approach is taken by Coq’s
built-in tactics ring and field for solving ring and field equalities. First, an Ltac
reifies an expression as a list of base variables, ignoring identity elements ⊺, flattening
out the associativity of ○, and collapsing the expression to � if � occurs anywhere in
the expression:

3https://github.com/inQWIRE/LinearTypingContexts
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Ltac reify a :=
match a with
| ⊺ ⇒ constr:(Some [])
| � ⇒ constr:(None)
| ?a1 ○ ?a2 ⇒ let e1 := reify a1 in

let e2 := reify a2 in
match e1, e2 with
| Some ls1, Some ls2 ⇒ constr:(Some (ls1 ++ ls2))
| _, _ ⇒ constr:(None)
end

| _ ⇒ constr:(Some [a])
end.

A goal a1 = a2 can then be exchanged with one of the form from_list ls1 =
from_list ls2, where lsi is the result of calling reify on ai. We can then check if
ls1 and ls2 are permutations of one another and, if so, apply a lemma to solve the
goal.

Our extensions to monoid add commutativity (by looking for permutations rather
than simple equality) and also allow us to unify expressions that contain a single evar.
We limit this to one evar, since multiple evars admit multiple solutions, just like an
additive equation of the form a+ x = b+ y admits infinite possible values for x and y.
(If x and y were on the same side of the equals sign and constrained to be natural
numbers, there would be a finite number of solutions, and the same is true for our
OCtxs. Unfortunately for our purposes, most finite numbers are not 1.)

Conveniently, our typechecking algorithm above always instantiates all but one
evar before calling monoid.

9.1.2 Validate
Our validate tactic solve goals of the form is_valid Γ, where Γ may be the merger
of many contexts, thereby showing that Γ is not Invalid and can type a circuit. The
validate tactic makes use of a simple observation: Γ1 ⋓ Γ2 ⋓ Γ3 is valid if and only if
Γ1 ⋓ Γ2, Γ2 ⋓ Γ3, and Γ1 ⋓ Γ3 are valid. Hence, checking validity amounts to checking
pairwise disjointness.

The validate tactics first rewrites in the premises to find the largest expressions
such that Γ1 ⋓ ... ⋓ Γn is valid. For instance, if it finds a hypothesis H : Γ = Γ1 ⋓ Γ2,
and Γ appears in some larger merge expression, it will replace all instances of Γ with Γ1
⋓ Γ2 and clear H. It then breaks down our large merge expressions into pairwise claims
of validity. Once Coq’s hypothesis context is saturated with expressions of validity,
we similarly replace the goal with pairwise claims of validity. If we can unify these
goals with our existing hypotheses, we’ve proven validity. If not, it’s impossible to
show validity since no more information about our abstract contexts can be gathered.

This concludes our discussion of Qwire’s linear typechecker.
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9.2 Arithmetic
As noted in Section 5.4, we use the Coquelicot (Boldo et al., 2015) extension of the
Coq reals to complex numbers to populate our matrices. This is mainly to make use
of Coq’s built-in tactics for solving real number equalities, particularly the linear real
arithmetic tactic lra. We define an equivalent function for complex numbers called
clra4 that breaks a complex equality c = c' into its real components, fst c = fst c'
and snd c = snd c', and then solves each using lra:
Ltac clra := eapply c_proj_eq; simpl; lra.

Here c_proj_eq says that if the first and second projections are equal, so are the pairs
that make up the complex numbers.

Note that clra, like lra, is what the Mathematical Components library (Mahboubi
et al., 2016) calls a terminating tactic: It either solves the goal or fails without making
progress. We will also need tactics that simplify the goal state without solving it. The
most straightforward of these is Csimpl, which rewrites using the basic additive and
multiplicative identities for 0 and 1 and replaces c∗ (our notation for the complex
conjugate) with c when the imaginary part is 0. This lightweight technique proves
particularly valuable for dealing with the products of sparse matrices, since their
elements contain many sub-expressions of the form A x y ∗ 0 and 0∗ ∗ B x y.

Coq has little automation support for two kinds of formulae that appear frequently
in our development: equations involving

√
2 and equations involving natural number

powers of 2. The first appear whenever we apply the Hadamard matrix, which, you
may recall, has the form

1√
2
(1 1
1 −1) .

Our group_radicals tactic groups together all of the
√
2 terms in our formula and

simplifies what it can. This often results in a substantially more manageable goal
state.

The other expression, 2n for natural numbers 2 and n, is even more common in
our development. To understand why, recall that an n-qubit system corresponds to
a density matrix with dimensions 2n × 2n. When we take the Kronecker product of
an m × n and o × p matrix, we get an mo × np matrix as the result. Hence, in the
case of m- and n-qubit systems, we should obtain a matrix of height 2m ∗2n or 2m+n.
Since multiplying A and B requires that the second dimension of A should match
the first dimension of B, we need to reduce these dimensions to a normal form. Our
unify_pows_two does exactly this through a series of rewriting rules.

Both clra and Csimpl are simple, unextensible tactics, so we also provide the
user with C_db, a hints database of complex number equalities. C_db is a rewriting
database, meaning that it is used to simplify the goal rather than to solve it. The

4Technically, this should be lca for “linear complex arithmetic,” but clra makes the connection
to lra clear, as will our mlra tactic for matrices
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idiom
autorewrite with C_db; clra is pretty common in the Qwire development.

9.3 Linear Algebra
9.3.1 Matrix Properties
Automation is critical for handling matrices in Coq. Before we delve into our main
tactics (reduce_matrices and solve_matrices) for handling equalities on matrices,
we will look at some of the minor matrix tactics that play an important role in the
Qwire development.

Well-formedness As noted in Section 5.4, our matrices are simply functions of
the form N → N → C with additional type information about their dimensions. We
will often need to check a well-formedness condition that guarantees that a given
matrix has all zeroes outside of its specified dimensions. We provide two approaches
for solving this kind of problem. The show_wf tactic is designed for concrete matrices:
It unfolds the definition of WF_Matrix and then destructs x > m ∨ y > n. Consider the
case where x >m. The tactic replaces x with m + (x −m) and simplifies the goal. In
the case of simple matrices that pattern match on x then y, this will immediately
match the wild card case—the zero. In the y > n case, we may have to destruct x
up to m times first, but ultimately we will obtain 0 = 0. In order to use show_wf on
slightly more complex matrices involving sums, products or transposes, we call cbv
to unfold these definitions and solve the final equality with clra.

Once our basic set of matrices is defined, we will generally create new matrices
by composing existing ones. In the development, we show that all of our matrix
operations preserve well-formedness, and we add those proofs to the database wf_db.
We then use auto with wf_db to prove that matrix expressions are themselves well-
formed.

Pure and Mixed States For quantum computation, it is often important to know
that we are working with pure or mixed states (discussed in Section 6.1.3). We provide
tactics show_pure and show_mixed to establish that a matrix possesses the desired
property, with show_mixed including show_pure as a subroutine (since all pure states
are mixed states). These mostly exploit existing lemmas about applying operations
to pure states, though they often need to first show that dimensions line up. This can
be accomplished using the dim_solve and unify_dim_solve tactics.

Lightweight Equalities For simple matrix equalities, we provide the tactic mlra,
for matrix linear real arithmetic. The tactic begins by unfolding matrix definitions
using the unfolding database M_db. It then applies functional_extensionality twice
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and destructs the results using destruct_m_eq, allowing it to compare matrices at the
element level. Hence, the goal

(a0,0 a01
a1,0 a11

) = (b0,0 b01
b1,0 b11

)

becomes
∀x,∀y,(a0,0 a01

a1,0 a11
)(x, y) = (b0,0 b01

b1,0 b11
)(x, y)

which becomes the four goals

a0,0 = b0,0 (9.3.1)
a0,1 = b0,1 (9.3.2)
a1,0 = b1,0 (9.3.3)
a1,1 = b1,1 (9.3.4)

along with a small number of “0 = 0” goals (due to the construction of our matrices),
which are immediately discharged by reflexivity. Our mlra tactic then solves the
four goals using our favorite tool for complex number equalities, clra.

Msimpl is the matrix counterpart to Csimpl. Unlike Csimpl, Msimpl has extensi-
bility built in via the M_db rewriting database. (Coq allows us to use the same name
for unfolding and rewriting databases.) Msimpl contains some additional code for
rewriting expressions involving the Kronecker product or controlled matrices, since
autorewrite can often struggle to unify these terms due to difficulty matching on the
matrix dimensions. Otherwise, however, it behavess much like our other simplification
tactics, in that it only uses simple equalities to rewrite a goal into a more manageable
state.

9.3.2 Solving Matrix Equalities
So much for our lightweight tactics. Our powerful tactics for simplifying and solving
matrix equalities are called reduce_matrices and solve_matrix, respectively. The
two tactics rely on an overlapping set of sub-tactics, so we will treat the two of them
together.

Let us begin by taking a bird’s-eye view of the problem of simplifying matrix
expressions. Solving complicated matrix equalities is the rare area where computa-
tion by rewriting is substantially more efficient than simple evaluation, regardless of
reduction strategy. To see why, consider the expression

A ×B ×C

where A has dimensions m × n, and C has dimensions o × p. Naively simplifying the
two left-most matrices involves m ∗ o sums, each of vectors of length n, for a total
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time of m ∗ o ∗ n. The resulting matrix has dimensions m × o, so multiplying it by
C takes an additional m ∗ p ∗ o steps, for a total of mon + mpo = mo(n + p). By
contrast, if we started with the right-most matrices, it would take np(m + o) time.
Imagining that m = o = 32 and n = p = 8, the first approach takes 214 steps, and the
second takes 212. And these effects compound as we multiply more matrices. Hence,
we take an approach where, if m or o is the smallest of the four numbers, we associate
left; otherwise, we associate right. (We could compute mo(n + p) vs. np(m + o) in
the tactic language, but this turns out to be a good and cheap proxy.) The tactic
assoc_least reassociates at all levels of a complex matrix expression, though we will
begin computing with the innermost matrices.

Once we’ve identified the matrices A and B that we want to multiply first, how
do we multiply them together while ignoring the rest of the equation? We found that
the easiest approach is simply to construct an appropriately-sized matrix E full of
evars and then to replace A × B with E. This allows us to focus on the separate goal
of computing E and to simplify A×B as much as possible before unifying it with E.
This work is all done by the reduce_aux tactic:
Ltac reduce_aux M :=

match M with
| ?A .+ ?B ⇒ compound A; reduce_aux A
| ?A .+ ?B ⇒ compound B; reduce_aux B
| ?A × ?B ⇒ compound A; reduce_aux A
| ?A × ?B ⇒ compound B; reduce_aux B
| @Mmult ?m ?n ?o ?A ?B ⇒ let E := evar_matrix m o in

replace M with E;
[| crunch_matrix ]

| @Mplus ?m ?n ?A ?B ⇒ let E := evar_matrix m n in
replace M with E;
[| crunch_matrix ]

end.

The compound A tactic simply checks that A consists of the sum or matrix product
of two matrices, in which case reduce_aux is recursively called on A. Otherwise, if
reduce_aux is called on two irreducible matrices, it constructs a matrix full of evars
using evar_matrix. Note that in this case, the match clause expands ?A × ?B to @Mmult
?m ?n ?o ?A ?B. This gives us the dimensions of the matrices and, therefore, of the
desired evar matrix. Finally, we call another tactic to unify ?A × ?B with E.

The crunch_matrix tactic handles unification. It works much like mlra, except that
when called as a subroutine of reduce_matrices and solve_matrix, it’s guaranteed to
work because we can unify any expression with an evar. Hence, it mostly has to make
decisions regarding the degree of simplification required before unification. In practice,
we only use simpl and Csimpl on the elements of the matrix, as heavy rewriting would
dramatically slow down the tactic. The goal is solved by try reflexivity: The try is
there so that crunch_matrix makes progress even if one side doesn’t consist of evars.

This basically describes the full process of reduce_matrices. It looks for matrices
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in the goal and calls assoc_least and reduce_matrix_aux on them. It keeps calling
reduce_matrix_aux until no more matrices can be combined. Note that throughout
this process, the relevant operations are matrix multiplication and addition. The
Kronecker product and transpose are both easy enough to compute using our repre-
sentation that (A⊗B)† is treated like an irreducible matrix in this process.

The solve_matrix tactic is essentially reduce_matrices with an extra step. Once
it has reduced both sides of a matrix equality to atomic matrices, it makes a final call
to solve_matrix. This tactic will rarely discharge the m∗n goals produced, as it only
does basic simplifications and try reflexivity. Our solve_matrix will then attempt
to unify the complex number equalities by rewriting with C_db and calling try clra.
If clra fails to discharge all of the goals, they will be left for the user to complete (or,
frequently, to revise their theorem).

9.4 Denoting Circuits
The last bit of relevant automation relates to the denotation of circuits. As we saw in
Section 5.5, transforming circuits to super-operators isn’t a simple computation, and
Coq needs some help to get there. We provide two tactics for transforming circuits to
their denotations, corresponding to the two representations of quantum states from
Chapter 2.

The first tactic matrix_denote works pretty much as you might expect. It repeat-
edly unfolds terms from the database den_db and simplifies the goal. This leaves
the user with a fairly complicated matrix expression, which she may either call
solve_matrix on or attempt to make tractable in some other way.

However, as we saw in Section 2.4, there is a far more economical representation
for circuits in terms of vectors, provided that the circuits don’t contain measure-
ment. Instead of providing an alternative denotation for measurement-free circuits,
we take advantage of the fact that the density matrix representation of a pure state
∣ϕ⟩ is simply ∣ϕ⟩ ⟨ϕ∣. Hence, we can fold the matrix denotation of a circuit into the
vector denotation by means of a few lemmas. The vector_denote tactic does ex-
actly that, unfolding only what needs to be unfolded to produce a goal of shape
super U (∣ϕ⟩ ⟨ϕ∣) = ∣ψ⟩ ⟨ψ∣, where U may correspond to a sequence of unitary opera-
tions, and then appying a lemma to reduce this to U ∣ϕ⟩ = ∣ψ⟩. Such a goal can be
efficiently discharged by solve_matrix, which will associate all the matrices to the
right, so we’re always multiplying by an 2n × 1 matrix for some n.

9.5 Tactics Reference
We conclude with a table of our tactics, excluding some minor sub-tactics, along with
brief descriptions for easy reference. We also include a list of databases for use in
unfolding, rewriting, and solving goals.
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Tactic Effect
General Use Tactics

bdestruct t Destructs a boolean relation on natural numbers t and
inserts the corresponding propositional relation into the
context (from Appel (2018))

bdestructΩ t Calls bdestruct t then tries to solve the goal with omega

simpl_rewrite H Simplifies H and uses it to rewrite in the goal
simpl_rewrite' H Like simpl_rewrite H but for rewriting right-to-left
unify_pows_two Simplifies natural number expressions involving powers

of two
Real and Complex Number Arithmetic

clra Linear real arithmetic (lra) extended to complex num-
bers

nonzero Solves goals of the form c ≠ 0 (for complex c)
group_radicals Simplifies real and complex expressions involving

square roots of two
Rsimpl Simplifies real expressions
Csimpl Simplifies complex expressions
Rsolve Terminating tactic calling Rsimpl and group_radicals

Csolve Terminating tactic calling Rsolvea
Matrix Tactics

prep_matrix_equality Applies functional_extensionality twice to show ma-
trix equality

show_wf Manually shows that a matrix is well-formed
show_pure Shows that a matrix corresponds to a pure state
show_mixed Shows that a matrix corresponds to a pure state
dim_solve Shows that the dimensions of two matrices are equal
unify_dim_solve Solves equations of the form A ⊗B = A ⊗B where the

implicit dimensions are different
Msimpl Uses matrix equalities to simplify matrix expressions
destruct_m_eq Repeatedly destructs natural numbers in match state-

ments
mlra Uses destruct_m_eq to replace a matrix equality with

m ∗ n complex number equalities; attempts to solve
these using clra
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Tactic Effect
evar_matrix m n Creates an m × n matrix of evars
assoc_least Reassociates matrices so that the smallest dimensions

are multiplied first
crunch_matrix Attempts to unify all the elements in two matrices
reduce_matrix Does a single reduction of A×B or A+B, where A and

B are irreducible matrices in the goal
reduce_matrices Reduces all of the matrices in the goal
solve_matrix Solves matrix equalities using assoc_least,

reduce_matrices and crunch_matrix

Typechecking
invert_patterns Reduces all patterns in the hypotheses to bit v, qubit v

or unit
monoid Solves monoidal equalities with at most one evar
validate Shows that a context is valid
solve_merge Solves goals of the form Γ == Γ1 ⋅ Γ2 using monoid and

validate
simple_typing Typechecks a circuit using only existing lemmas
type_check_once A single iteration of the typechecking tactic
type_check Typechecks all of the goals until they are solved

Circuit Denotation
matrix_denote Turns a circuit without into its vector denotation via

unfolding and simplification
vector_denote Turns a unitary circuit without measurement into its

vector denotation
case_safe Replaces the denotation of an ancilla-free circuit with

its “safe” denotation
case_unsafe Replaces the denotation of an ancilla-free circuit with

its “safe” denotation
rewrite_inPar Rewrites using the admitted fact inPar_correct
compose_denotations Rewrites using the admitted fact denote_compose

Table 9.1: A summary of Qwire tactics

Database Description
R_db Real number rewriting
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C_db Complex number rewriting
C_db_light Lightweight complex rewriting
Cdist_db Normalizing complex expressions
M_db Matrix rewriting
proof_db Circuit denotation rewriting
monad_db Monad unfolding
M_db Matrix unfolding
den_db Circuit denotation unfolding
vector_den_db Circuit denotation unfolding (vector representation)
wf_db Matrix well-formedness proofs
typed_db Typing proofs

Table 9.2: A summary of Qwire databases
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Chapter 10

Details: Qwire Within

The concept of literate programming (Knuth, 1984; Ramsey, 1994) has gained wide
currency among the formal verification community. A literate program consists of a
program and its exposition interleaved in a single file, allowing for clearer code and
readable documentation. The popular “Software Foundations” series (Pierce et al.,
2018; Appel, 2018) and “Certified Programming with Dependent Types” (Chlipala,
2013) are both literate programs written in Coq, typeset using Coq’s literate pro-
gramming utility, Coqdoc. One could easily argue that this dissertation ought to be
a literate program: It describes a tool, Qwire, that is written entirely inside the Coq
proof assistant. Another argument would suggest that this is not a dissertation: It is
a pointer to a dissertation hosted on Github. Constrained as we are by formatting
requirements, we have provided a text that conveys the ideas of Qwire. However,
this is not enough.

In this chapter, we focus on the details of Qwire. We describe the development
itself in terms of its structure, the files that make up the structure, and the definitions
and lemmas that give it substance. We also discuss the assumptions that underlie the
Qwire development.

10.1 An outline of Qwire
The complete Qwire development consists of

• 25 Coq files,

• 20242 lines of code,

• 557 definitions,

• 786 theorems and lemmas, and

• 106 custom tactics.
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File LOC Definitions Fixpoints Inductives Ltacs
Prelim.v 397 3 8 0 7
Monad.v 409 28 4 0 4
Monoid.v 641 1 8 1 21
Complex.v 677 16 1 0 7
Matrix.v 1484 25 5 0 23
Quantum.v 1261 41 5 1 1
Contexts.v 1639 14 14 12 10
HOASCircuits.v 113 3 1 3 0
TypeChecking.v 415 3 2 0 6
DBCircuits.v 503 14 11 3 0
Denotation.v 4380 35 13 4 3
HOASLib.v 302 20 6 0 0
SemanticLib.v 110 0 0 0 0
HOASExamples.v 510 37 7 0 0
Composition.v 200 0 0 0 0
Ancilla.v 416 4 0 3 2
Symmetric.v 1536 25 3 2 1
Oracles.v 1376 1 18 2 14
Deutsch.v 232 2 0 0 3
Equations.v 458 20 0 0 0
HOASProofs.v 772 19 1 0 2
Arithmetic.v 1677 27 13 0 1
QASM.v 499 17 10 10 0
QASMPrinter.v 142 10 9 0 0
QASMExamples.v 93 12 0 0 1
Totals 20242 377 139 41 106

Table 10.1: A brief summary of the Qwire Coq development.
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In definitions, we include code beginning with Definition, Fixpoint, or Inductive.
By theorems and lemmas, we only mean Coq propositions that begin with Theorem
or Lemma and end with Qed or Defined. We will delve into detail about our theorems
and lemmas, as well as other kinds of statements, in the next section. We provide a
fuller account of the Qwire development in Table 10.1 and Table 10.2.

We can break down the twenty-four Coq files as follows1:

• Preliminaries

1. Prelim.v : A variety of general purpose definitions and tactics
2. Monad.v : An implementation of some basic monads
3. Monoid.v : A typeclass and solver for commutative monoids, modified from

LinearTypingContexts

• Underlying mathematical libraries (Chapter 5)

4. Complex.v : Complex number library, modified from Coquelicot
5. Matrix.v : Matrix library
6. Quantum.v : Defines unitary matrices and quantum operations

• Implementation of QWIRE (Chapter 5)

7. Contexts.v : Defines wire types and typing contexts
8. HOASCircuits.v : Defines QWIRE circuits using higher-order abstract syn-

tax
9. TypeChecking.v : Circuit notations and tactics for proving well-typedness
10. DBCircuits.v : Compiling HOAS to De Bruijin style circuits
11. Denotation.v : Defines the denotational semantics of QWIRE circuits and

proves its (quantum mechanical) validity
12. HOASLib.v : A library of basic circuits used in QWIRE programming
13. SemanticLib.v : Proves the semantic properties of HOASLib circuits
14. HOASExamples.v : Additional examples of HOAS circuits

• Verification of QWIRE circuits (Chapter 7)

15. HOASProofs.v : General proofs about quantum circuits
16. Equations.v : Equalities on small circuits
17. Deutsch.v : Alternative approaches to verifying Deutsch’s algorithm

1A modified version of this text also appears in the Github repository at https://github.com/
inQWIRE/QWIRE
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• Compositionality (Section 6.2)

1. Composition.v : Defines the compositionality facts used in Chapter 8

• Reversible Circuits (Chapter 8)

2. Ancilla.v : Defines the correctness of circuits using ancilla assertions
3. Symmetric.v : Syntactic conditions for guaranteeing the validity of asser-

tions
4. Oracles.v : Compilation of boolean expressions to QWIRE circuits
5. Arithmetic.v : Verification of a quantum adder

• Compilation to QASM (Section 11.2)

6. QASM.v : Compilation from QWIRE to QASM
7. QASMPrinter.v : A printer for compiled circuits, for execution on a quan-

tum computer/simulator
8. QASMExamples.v : Examples of circuit compilation

We have annotated the divisions with the chapters that focus on them, where ap-
propriate, though this characterization is fairly broad. Typechecking.v, for instance,
is covered in substantial detail in Chapter 9, as is Monoid.v. We have also excluded
some experimental files, including Dong-Ho Lee’s files for generating well-typed cir-
cuits, Generator.v and DBGenerator.v (see Section 11.2). We have included Lee’s
compiler to QASM, though it is not our own work, which will also appear in Sec-
tion 11.2.

10.2 Matters of Trust
The trusted computing base for Qwire is quite small. Besides for the core of Coq
itself, we include a few axioms from the Coq standard library. Our matrices are really
functions which requires us to use the functional extensionality axiom from Coq’s
standard library to prove that two matrices are equal:
Axiom functional_extensionality_dep : ∀ {A} {B : A → Type},
∀ (f g : ∀ x : A, B x),
(∀ x, f x = g x) → f = g.

Furthermore, as noted in Section 5.4.1, Coq’s real numbers are axiomatized: 0 and
1 are simply given as parameters and the rules about addition, multiplication and
other operations are given in terms of axioms. Fortunately, these axioms are very well
studied and known to be consistent.

The Qwire development itself adds three additional axioms. The first two are
well established facts about linear algebra. Minv_flip asserts that the right inverse
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File Lemmas Theorems Facts Propositions Examples
Prelim.v 32 0 0 0 0
Monad.v 3 0 0 1 0
Monoid.v 18 0 0 0 10
Complex.v 84 0 0 0 0
Matrix.v 91 5 0 1 1
Quantum.v 84 0 0 2 2
Contexts.v 72 0 0 0 0
HOASCircuits.v 2 0 0 0 0
TypeChecking.v 4 0 0 0 1
DBCircuits.v 17 0 0 1 0
Denotation.v 113 2 2 19 0
HOASLib.v 22 0 0 0 0
SemanticLib.v 14 0 0 0 0
HOASExamples.v 38 0 0 4 1
Composition.v 1 1 2 0 0
Ancilla.v 8 0 2 2 0
Symmetric.v 45 3 18 1 0
Oracles.v 35 1 2 3 1
Deutsch.v 5 0 0 0 1
Equations.v 26 0 0 3 0
HOASProofs.v 22 0 0 8 2
Arithmetic.v 38 0 0 1 32
QASM.v 0 0 0 0 1
QASMPrinter.v 0 0 0 0 0
QASMExamples.v 0 0 0 0 2
Totals 774 12 26 46 54

Table 10.2: A summary of the different kinds of statements in theQwire development.
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of a square matrix is also its left inverse and kron_assoc says that the Kronecker
product is associative. Proving these lemmas requires a substantial amount of linear
algebra that we haven’t yet formalized. Similarly, we have axiomatized the operator
sum decomposition theorem,
Axiom operator_sum_decomposition : ∀ {m n} (l : list (Matrix m n)),

outer_sum l = 'I_n ↔ WF_Superoperator (operator_sum l).

whose proof requires more concepts from linear algebra than we were able to provide.
See Section 6.1.4 for details.

Beyond these, we have a number statements beginning with Fact, to emphasize
that these were admitted. All of these are used exclusively in the files on reversibil-
ity, plus Deutsch.v which depends on compositionality axioms and isn’t discussed in
this dissertation. We refer the reader to Table 8.1 for an synopsis of the admitted
statements.

Finally, we include a number of conjectures, which begin with Proposition2, and
correspond to aborted claims that we would like to prove in the future.

We give a summary of the claims in Qwire in Table 10.2. A complete list of
theorems, lemmas, and facts in the Qwire development is provided in Appendix C.

2Conjecture is unfortunately used by Coq as a synonym for Axiom.

132



Chapter 11

Open Wires and Loose Ends

The arguably grandiose title of this dissertation is “Formally Verified Quantum Pro-
gramming”. Despite substantial recent interest, this area of research is in its infancy.
In Chapter 1, we made an bold claim: Quantum programming demands formal verifi-
cation, and therefore quantum programming languages must have well-defined seman-
tics and support for verification. This thesis, along with the broader Qwire project
and the work that inspired it, only begins to tackle this issue. In this chapter, we will
discuss the issues Qwire still needs to address in order to serve both as a real-world
quantum programming language and a robust, user-friendly verification tool.

This chapter will also seek to address a more interesting question, and hopefully
one that excites the reader. What else can Qwire do? To be precise, what challenges
does quantum computing face, in both the short term and the long term, and how
can Qwire help address those challenges? In this thesis, we have depicted quantum
computing as an exciting new technology that lies somewhere along the horizon.
But as John Preskill pointed out in a recent survey (Preskill, 2018), we should be
looking at multiple horizons, the first of which (Noisy Intermediate-Scale Quantum
Computing, or NISQ) is years, not decades, away. We will try to address how Qwire
and formal verification can help us run the quantum programs of tomorrow, not just
those of the far future.

11.1 Computing in Qwire
In the “future work” section of our 2017 QPL paper (Rand et al., 2017), we promised
to move Qwire to a more efficient backend, specifically referencing Qwire’s lin-
ear algebra library. Aside from the linear algebra, we wanted to move away from
our Coquelicot-based (Boldo et al., 2015) representation of complex numbers, which
Qwire still uses. Here we address the limitations of these libraries and the challenges
of migrating away from them.

The Coquelicot complex number library, which we have modified and included in
the Qwire development, is based on the Coq standard library’s real numbers. Co-
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quelicot’s C is simply a pair of Coq Rs. Coq’s real numbers, in turn, are axiomatized:
0,1,+,−,∗, ∖and < are simply declared as Coq parameters; they have no computa-
tional content. Likewise, the associativity, commutativity, and distributivity of + and
∗ are declared as axioms, as are the remaining field laws.

From a computational standpoint, this is awful. It is never possible to reduce real
number expressions using call-by-value or call-by-name reduction rules, because no
definitions exist to reduce. In Coq’s defense, this limitation is inherent to the real
numbers: e+π cannot normalize to anything but e+π. The exact nature of our proofs
prohibit using floating point numbers instead of reals, though once we account for
error terms (see the next section), we may be able to loosen this restriction.

How can we improve Qwire’s real number library to allow for computation?
Potentially, we could restrict ourselves to the algebraic numbers. Right now, only one
of our unitary gates, the Rθ = ( 1 0

0 eiθ ) gate, allows us to multiply our states by non-
algebraic numbers, and we typically instantiate θ with π/n for an integer n, yielding
n
√
−1. We could then compute by grouping like terms. It’s not clear how difficult this

would be to implement, and we are not aware of a library that does this.
The other bottleneck is our matrix library. which is quite slow. In fact, we have

trouble accounting for quite how slow it is, struggling to multiply even 16 × 16 di-
mensional matrices. In our QPL paper, we suggested adopting the Mathematical
Components library’s matrices (Mahboubi et al., 2016) for proofs, while reflecting
into the Coq Effective Algebra library (Cano et al., 2016) for efficient computation.
This ultimately raised several obstacles.

The Mathematical Components library, written in the SSReflect proof language
and used in the formally verified proofs of the Four Color Theorem (Gonthier, 2008)
and Feit-Thompson Theorem (Gonthier et al., 2013), uses dependently typed ma-
trices. On the face of it, this is an excellent use-case for dependent types. Matrix
multiplication is only defined on two matrices of dimensions m × n and n × o, respec-
tively, and dependent types can enforce this property. Unfortunately, the Kronecker
product, which is integral to quantum computation, multiplies the dimensions of its
argument matrices. As soon as we start dealing with matrices of dimensions 2m and
2n, where neither m nor n is concrete, convincing the Coq typechecker that we are
indeed multiplying compatible matrices becomes exceedingly difficult. This motivated
our decision to use phantom types (Leijen and Meijer, 1999), lightweight types meant
to guide development that are not enforced by the typechecker, in our matrices. We
discussed this design choice in detail at the Fourth International Workshop on Coq
for Programming Languages (Rand et al., 2018b).

CoqEAL has a number of advantages in terms of efficiently computing with large
matrices, including an implementation of Strassen’s Algorithm (Strassen, 1969) for
efficient multiplication, but a number of drawbacks as well. For one, it is not designed
for proofs, but rather, for computation. That means we would have to convert some
other matrix representation to CoqEAL matrices and only use them in the final
stages of certain proofs involving concrete matrices. The current version of CoqEAL
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also does not work with the Coq real numbers library and, hence, will not work with
our complex numbers. These challenges could probably be overcome, but doing so
would have limited payoff in the absence of the mathematical components library
and computational complex numbers.

11.2 Connecting Qwire
So far in this thesis, we have gestured towards three efforts to extend Qwire beyond
the narrow world of the Coq proof assistant, all of which are currently being pursued
by Dong-Ho Lee. Here we will flesh these out somewhat, noting that this author
merely advised on these projects.

Lee’s main contribution to Qwire is a compiler to the OpenQASM “quantum
assembly” language (Cross et al., 2017) and, specifically, to the subset of OpenQASM
that can run on IBM’s online quantum computer (IBM, 2017). The file QASM.v
provides a Coq datatype for OpenQASM circuits and compiles Qwire’s de Bruijn
circuits to this representation. In turn, QASMPrinter.v prints these structures to a
form that can be run on IBM’s quantum cloud. QASMExamples.v provides a few
examples of Qwire circuits and their corresponding OpenQASM programs.

Lee’s ongoing work seeks to extract Qwire to Haskell and OCaml for the sake
of efficient simulation and random testing. The first aim is natural: We want to be
able to efficiently simulate Qwire circuits, thereby making use of the run semantics
proposed in Chapter 4. More generally, a programming language ought to allow for
execution of its programs, even if it was written for computers that do not yet exist.
For the second aim, we have argued in this thesis that unit testing is not likely to work
for quantum programs, and this is doubly true for random testing. However, random
testing can assist in proving circuit correctness and other aspects of the formalization
project. Inspired by the QuickChick Coq plugin (Lampropoulos, 2018; Lampropoulos
and Pierce, 2018), we would like to use random testing to find small counterexamples
before we try to prove an incorrect specification for a circuit or family of circuits.
Towards that end, the Generator.v file seeks to generate well-typed de Bruijn circuits
and extract them to OCaml for testing. Hopefully, this will ease the cumbersome
verification process going forward.

11.3 The Future of Qwire
Research into Qwire and research using Qwire can extend into many domains, from
investigating and implementing quantum abstractions, to testing quantum circuits in
Qwire, to developing an even richer metatheory and categorical semantics. In this
section, however, we will focus on three near-term goals for Qwire, which mostly
pertain to near-term quantum computing.

135



Depth Gates Clean Qubits Total Qubits
Shor (1994) Θ(nM(n)) Θ(nM(n)) Θ(n) Θ(n)
Beckman et al. (1996) Θ(n3) Θ(n3) 5n + 1 5n + 1
Vedral et al. (1996) Θ(n3) Θ(n3) 4n + 3 4n + 3

Beauregard (2002) Θ(n3 lg 1
ε) Θ(n3 lg n

ε lg
1
ε) 2n + 3 2n + 3

Takahashi et al. (2006) Θ(n3 lg 1
ε) Θ(n3 lg n

ε lg
1
ε) 2n + 2 2n + 2

Zalka (2006) Θ(n3 lg 1
ε) Θ(n3 lg n

ε lg
1
ε) 1.5n +O(1) 1.5n +O(1)

Häner et al. (2016) Θ(n3) Θ(n3 lgn) 2n + 2 2n + 2
Gidney (2017) Θ(n3) Θ(n3 lgn) n + 2 2n + 1

Table 11.1: Space-efficient constructions of Shor’s algorithm over time. M(n) is the
classical time-complexity of multiplication and ε is the maximum error when synthe-
sizing the circuit out of a fixed set of universal gates. Reproduced with permission
from Gidney (2017).

11.3.1 Verified Optimization and Compilation
As we discussed in Chapter 7, verified optimization is a key next step for Qwire.
Before we delve into our optimization goals, it is worth discussing why this is an
important problem.

While large corporations like Google and IBM seek to accelerate progress in quan-
tum computing by building larger and more powerful quantum computers, a similar
effort has gone into bringing down the cost of the quantum algorithms themselves.
Among the major measures of cost are circuit depth, gate count, and the number of
qubits required.

For instance, Figure 26 of Gidney (2017) (reproduced in Table 11.1) shows the
improvement in Shor’s algorithm over the course of twenty-three years and eight
papers. Shor’s initial approach (1994) only showed that we could factor numbers using
Θ(n) qubits, where n is the length of the number to be factored. Subsequent work
by Beckman et al. (1996), showed that the algorithm could be implemented using
5n qubits, and Häner et al. (2016) and Gidney (2017) reduced that to 2n qubits,
with the latter showing that half of these could be dirty qubits in an unknown state.
From Beckman et al. to Gidney, the depth and gate requirements remained almost
the same, increasing from Θ(n3) to Θ(n3 log(n)) in the latter case. Shor’s original
algorithm is in principle more efficient on both metrics but impossible to implement
using a reasonable number of qubits.

Other recent work has focused on efficiently approximating common quantum
gates using a standard gate set (Ross and Selinger, 2014; Kliuchnikov et al., 2016)
and efficiently synthesizing various kinds of circuit (Bocharov et al., 2015a,b). Saeedi
and Markov (2013) survey the literature on this topic.

Our goal is to use the circuit equalities discussed in Section 7.4, along with ad-
ditional rules drawn from Nam et al. (2018), Fagan and Duncan (2018), and other
sources in order to optimize circuits before executing them. In particular, we would

136



like to optimize these circuits subject to constraints. These constraints may take a
variety of forms, from limiting the available gate set to restricting the interactivity
of qubits. For instance, Kutin (2006) provides a version of Shor’s algorithm for a
computer on which only adjacent qubits may interact with one another. This will re-
quire us to develop a means of specifying constraints in Qwire and to prove that our
optimizations not only preserve a circuit semantics, but also satisfy these constraints.

Once we have optimized our circuits, we would like to extend Dong-Ho Lee’s
compiler to convert them to OpenQASM (Cross et al., 2017) or QUIL (Smith et al.,
2016). The translation should also be bidirectional: We should be able to convert
OpenQASM or QUIL programs to Qwire to typecheck, optimize, and verify them.
This would greatly increase the practical utility of Qwire in the short term.

11.3.2 Error Awareness and Error Correction
The largest challenge facing quantum computing is the problem of errors: Errors
creep into quantum computation not only when gates are applied to qubits, but
even as time passes (through quantum decoherence). This gave rise to the study of
quantum error correction (Preskill, 1998), which seeks to address the problems by
using collections of qubits called logical qubits that are easily corrected. A variety
of threshold theorems (Aharonov and Ben-Or, 1997; Kitaev, 1997; Gottesman, 1997)
showed, under a variety of conditions, that arbitrarily large quantum computations
could be performed, provided that the error rates on gates are kept below a certain
threshold. Unfortunately, these error-correcting codes are expensive. Fowler et al.
(2012) estimate that we need over 3000 physical qubits per logical qubit, which will
prove unfeasible in the near term.

We have two goals for Qwire in this area. The first is to extend Qwire’s se-
mantics to be error-aware. There are two main approaches to this problem: Extend
the semantics to produce density matrices with error terms, or externally compute
error terms for the entire circuit. This will help us quantify the errors in individual
algorithms. We will be able to bound the probability of failure for each possible failure
mode. This will allow us to identify which algorithms can be run without error cor-
rection and attempt to write and verify quantum algorithms for error prone quantum
computers.

Once we have this model, we can start to write error correcting codes in Qwire
and verify that they work as specified. Specifically, we will be able to analyze the
error rates of corrected circuits under a variety of assumptions and in different hard-
ware models. This should lend some assurance to the error correcting codes currently
proposed and perhaps help us come up with new error correction schemes.

11.3.3 Verified Algorithms and Cryptography
Of course, Qwire shouldn’t be entirely focused on near term quantum computation.
Many of the longer term possibilities for quantum computing are among the most
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exciting. In principle, Qwire should be able to verify a broad range of quantum
programs, from Shor (1994) and Grover’s (1996) algorithms to quantum random
walks (Aharonov et al., 2001; Childs et al., 2003) and quantum simulation of physical
systems (Georgescu et al., 2014).

One of the most interesting problems for Qwire is to verify quantum crypto-
graphic protocols. Unruh’s Quantum Relational Hoare Logic (2018) seeks to form
the foundation for a tool to verify quantum cryptographic protocols, modeled on the
EasyCrypt tool (Barthe et al., 2011, 2012) for non-quantum cryptography. While
such deductive systems are useful, they themselves often rest on weak foundations.
We could attempt to prove the security of a cryptographic protocol by programming it
in Qwire and proving it directly or, alternatively, by developing a logic and proving
it sound with respect to Qwire’s semantics. This would provide a strong foundation
for reasoning about quantum cryptographic systems.

In a field as young as quantum computing, we cannot predict what researchers
will want to verify next year, let alone once we have scalable quantum computers to
experiment with and program. But we do know that there is a great deal to verify. And
we are confident that Qwire and tools like it will play an increasingly important role
as this field develops and gives us new protocols to verify and challenges to overcome.
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Appendix A

Solutions to Exercises

Exercise 1. Show that H is its own inverse.

Solution. Let us first consider H applied to the basis states. We have already shown
that H(H ∣0⟩) = ∣0⟩. The proof that H(H ∣1⟩) = ∣1⟩ follows similarly:

H(H ∣1⟩) =H ( 1√
2
∣0⟩ − 1√

2
∣1⟩)

= 1√
2
H ∣0⟩ − 1√

2
H ∣1⟩

= 1√
2
( 1√

2
∣0⟩ + 1√

2
∣1⟩) − 1√

2
( 1√

2
∣0⟩ − 1√

2
∣1⟩)

= 1

2
∣0⟩ + 1

2
∣1⟩ − 1

2
∣0⟩ + 1

2
∣1⟩

= 1

2
∣1⟩ + 1

2
∣1⟩

= ∣1⟩

For any non-basis state α ∣0⟩ + β ∣1⟩, we have

H(H(α ∣0⟩ + β ∣1⟩) = αH(H ∣0⟩) + βH(H ∣1⟩) = α ∣0⟩ + β ∣1⟩

since unitaries distribute over superposition, H(H ∣0⟩) = ∣0⟩, and H(H ∣1⟩) = ∣1⟩. ∎

What if we want to measure one qubit in a multiple qubit system? Let ∑iαi ∣i⟩
represent the part of the state in which the qubit to be measured is ∣0⟩ and ∑j βj ∣j⟩
represent the part in which the qubit is ∣1⟩. Then the probability of measuring ∣0⟩ is
∑i∣αi∣2, returning the state

1
√
∑i∣αi∣2

∑
i

αi ∣i⟩
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and similarly for ∣1⟩. The scaling factor on the left renormalizes the quantum state so
that the squares of the amplitudes still add up to 1.

Exercise 2. Now try measuring the second qubit in both of these cases. Verify that
the distribution of results is the same as if we had measured the whole system at
once.

Solution. Let us begin by simplifying the expression for the case where we measured
a ∣0⟩: √

3

2
(1
3
∣00⟩ + 2 + i

3
∣01⟩) = 1√

6
∣00⟩ + 2 + i√

6
∣01⟩

The probability of measuring ∣00⟩ here is ∣ 1√
6
∣
2
= 1

6 and the probability of measuring

∣01⟩ is ∣2+i√
6
∣
2
= 4+1

6 =
5
6 . We can scale these by the 2

3 probability of having measured
the first qubit as ∣0⟩ to get total probabilities of 1

9 and 5
9 , respectively.

In the case where we measured the first qubit as ∣1⟩, we are guaranteed to measure
∣11⟩ and so the total probability of measuring ∣11⟩ is 1

3 .
Now, if we had initially measured the entire state we would have gotten

meas (1
3
∣00⟩ + 2 + i

3
∣01⟩ + 1√

3
∣11⟩) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣00⟩ with probability ∣13 ∣
2 = 1

9

∣01⟩ with probability ∣2+i3 ∣
2 = 5

9

∣11⟩ with probability ∣ 1√
3
∣
2
= 1

3

as expected.
∎

Exercise 3. Verify that after measuring a qubit, the norm of the quantum state is
still one.

Solution. The sum of squares after measuring ∣i⟩ is

∣ 1
√
pi
∣
2

∑
i

∣αi∣2 =
∑i∣αi∣2

∑i∣αi∣2
= 1

. ∎

Exercise 4. Write (α ∣0⟩+β ∣1⟩)⊗(γ ∣0⟩+δ ∣1⟩) as a vector, first by taking the Kronecker
product directly and then by simplifying the expression and transforming it into vector
notation. Confirm that both results are equal.

Solution. We can write the two components as the vectors (α
β
) and (γ

δ
). Taking the
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Kronecker product we get
⎛
⎜⎜⎜⎜
⎝

α(γ
δ
)

β (γ
δ
)

⎞
⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

αγ
αδ
βγ
βδ

⎞
⎟⎟⎟
⎠
.

Alternatively, we can simplify the expression first using left and right distributiv-
ity:

(α ∣0⟩ + β ∣1⟩)⊗ (γ ∣0⟩ + δ ∣1⟩)
=α ∣0⟩⊗ (γ ∣0⟩ + δ ∣1⟩) + β ∣1⟩⊗ (γ ∣0⟩ + δ ∣1⟩)
=α ∣0⟩⊗ γ ∣0⟩ + α ∣0⟩⊗ δ ∣1⟩ + β ∣1⟩⊗ γ ∣0⟩ + β ∣1⟩⊗ δ ∣1⟩
=αγ(∣0⟩⊗ ∣0⟩) + αδ(∣0⟩⊗ ∣1⟩) + βγ(∣1⟩⊗ ∣0⟩) + βδ(∣1⟩⊗ ∣1⟩)
=αγ ∣00⟩ + αδ ∣01⟩ + βγ ∣10⟩ + βδ ∣11⟩

and convert the result to matrix form:

⎛
⎜⎜⎜
⎝

αγ
αδ
βγ
βδ

⎞
⎟⎟⎟
⎠

∎

Exercise 5. Note that H, X, Z and CNOT are all their own adjoints. Verify that
these matrices are unitary.

Solution.

H ∶ ( 1√
2
(1 1
1 −1))

2

= 1
2 (

1 + 1 1 + −1
1 + −1 1 + − − 1

) = 1
2 (

2 0
0 2
) = I2

X ∶ (0 1
1 0
)
2

= (0 + 1 0 + 0
0 + 0 1 + 0

) = I2

Z ∶ (1 0
0 −1)

2

= (1 + 0 0 + 0
0 + 0 0 + − − 1

) = I2
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CNOT = ( I2 0
0 X

):

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

2

=
⎛
⎜⎜⎜
⎝

1 + 0 + 0 + 0 0 + 0 + 0 + 0 0 + 0 + 0 + 0 0 + 0 + 0 + 0
0 + 0 + 0 + 0 0 + 1 + 0 + 0 0 + 0 + 0 + 0 0 + 0 + 0 + 0
0 + 0 + 0 + 0 0 + 0 + 0 + 0 0 + 0 + 0 + 1 0 + 0 + 0 + 0
0 + 0 + 0 + 0 0 + 0 + 0 + 0 0 + 0 + 0 + 0 0 + 0 + 1 + 0

⎞
⎟⎟⎟
⎠
= I4

∎

Exercise 6. Show that H, X, Z, and CNOT have the behavior described in the
previous section. That is, show that when applied to basis vectors ( 10 ) and ( 01 ) they
produce the claimed output.

Solution.

H ∶ 1√
2
(1 1
1 −1)(

1
0
) = 1√

2
(1
1
) 1√

2
(1 1
1 −1)(

0
1
) = 1√

2
( 1−1)

X ∶ (0 1
1 0
)(1

0
) = (0

1
) (0 1

1 0
)(0

1
) = (1

0
)

Z ∶ (1 0
0 −1)(

1
0
) = (1

0
) (1 0

0 −1)(
0
1
) = ( 0−1)

CNOT :

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠

∎

Exercise 7. Prove that for any pure state ρ in density matrix form, ρ2 = ρ.

Solution. Since ρ represents a pure state, ρ = ∣ϕ⟩ ⟨ϕ∣ for some unit-vector ∣ϕ⟩.
Hence ρ2 becomes ∣ϕ⟩ ⟨ϕ∣ ∣ϕ⟩ ⟨ϕ∣.
As we showed earlier, for any quantum state ∣ψ⟩, ⟨ψ∣ ∣ψ⟩ is the one element identity

matrix (this is equivalent to the norm being 1). Hence, by multiplying the innermost
matrices together, we obtain ∣ϕ⟩ I1 ⟨ϕ∣ = ∣ϕ⟩ ⟨ϕ∣ = ρ.

∎
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Exercise 8. Show that for a pure state in density matrix form, the ith element along
the diagonal is the probability of measuring ∣i⟩.

Solution. As we noted, a pure state in density matrix form can be written out as
∣ϕ⟩ ⟨ϕ∣. If ∣ϕ⟩ consists of the elements α0, α1, . . . , αn, then this produces the following
matrix:

⎛
⎜⎜⎜
⎝

α0α0 α0α1 . . . α0αn

α1α0 α1α1 . . . α1αn

⋮ ⋮ ⋱ ⋮
αnα0 αnα1 . . . αnαn

⎞
⎟⎟⎟
⎠

Thus, the kth element along the diagonal will be αkαk. It remains to show that every
αkαk = ∣α∣2 (the probability of measuring ∣k⟩).

Let us expand αk out as a + bi.

(a + bi)(a + bi) = (a + bi)(a − bi) = a2 + b2

. Similarly
∣a + bi∣2 =

√
a2 + b2

2
= a2 + b2

.
∎
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Appendix B

Qwire in Theory: Proofs

B.1 Type safety and normalization
Theorem 5 (Preservation). Suppose Ð→H satisfies preservation.

1. If ⊢ t ∶A and tÐ→ t′, then ⊢ t′ ∶A.

2. If ⋅;Q ⊢ C ∶W and C Ô⇒ C ′, then ⋅;Q ⊢ C ′ ∶W .

Proof.

1. If t steps via Ð→H then the result is immediate by the assumption that Ð→H
satisfies preservation. Otherwise, suppose t Ð→b t′. It must be the case that A =
Box W1 W2 and t = box p⇒ C where Ω⇒ p ∶W1 and ⋅;Ω ⊢ C ∶W2. If t steps via the
structural rule with C Ô⇒ C ′, then t′ = box p⇒ C ′, and by the inductive hypothesis,
⋅;Ω ⊢ C ′ ∶W2 and so ⋅ ⊢ box p⇒ C ′ ∶Box W1 W2.

If t steps instead by an η rule, then t′ = box p′ ⇒ C {p′/p} where p′ is concrete
for W1. By Lemma 5 there is some Q such that Q ⇒ p′ ∶W1, so by the substitution
lemma (Lemma 4), we have ⋅;Q ⊢ C {p′/p} ∶W2, and thus ⋅ ⊢ t′ ∶Circ(W1,W2).

2. By induction on C Ô⇒ C ′.

(a) If C = unbox t p then we have

⋅ ⊢ t ∶Box W1 W and Q⇒ p ∶W1.

If C steps by a structural rule with t Ð→ t′, then by the inductive hypothesis
we have ⋅ ⊢ t′ ∶Box W1 W , and so ⋅;Q ⊢ unbox t′ p ∶W . If it steps via the β rule,
then t = box p′ ⇒ N , and so by inversion we know there is some Q′ ⇒ p′ ∶W1

such that ⋅;Q′ ⊢ N ∶W2. By the substitution lemma (Lemma 4), we have that
⋅;Q ⊢ N {p/p′} ∶W as expected.
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(b) Suppose C is p2 ← gate g p1;C0, where Q = Q1,Q0 and

Q1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2 ⋅;Ω2,Q0 ⊢ C0 ∶W.

If C steps via a structural rule on C0, the result is straightforward from the
induction hypothesis. Otherwise, it steps via an η-expansion:

p2 ← gate g p1;C0Ô⇒ p′2 ← gate g p1;C0 {p′2/p2}

where Q2 ⇒ p′2 ∶W1. By Lemma 4 we know ⋅;Q2,Q ⊢ C0 {p′2/p2} ∶W , and so
⋅;Q1,Q ⊢ p′2 ← gate g p2;C0 {p′2/p2} ∶W .

(c) Finally, suppose C = p← C1;C2, where Q = Q1,Q2 and

⋅;Q1 ⊢ C1 ∶W ′ Ω⇒ p ∶W ′ ⋅;Ω,Q2 ⊢ C2 ∶W

If C steps via a structural rule, the result is immediate. If it steps via a β-rule,
then C1 = output p′, and by inversion, Q1 ⇒ p′ ∶ W . By Lemma 4, we have
⋅;Q1,Q2 ⊢ C ′ {p′/p} ∶W ′.
If C1 = p2 ← gate g p1;C0 such that

p← C1;C2Ô⇒ p2 ← gate g p1;p← C0;C2

by a commuting conversion, then by inversion we have Q1 = Q′1,Q0 where
g ∈ G(W1,W2), Q′1 ⇒ p1 ∶ W1, Ω′2 ⇒ p2 ∶ W2, and ⋅;Ω′2,Q0 ⊢ C0 ∶ W ′. Then
⋅;Ω′2,Q0,Q2 ⊢ p← C0;C2 ∶W and so

⋅;Q′1,Q0,Q2 ⊢ p2 ← gate g p1;p← C0;C2 ∶W.

If C1 = x ⇐ lift p′;C0 such that

p← C1;C2Ô⇒ x ⇐ lift p′;p← C0;C2

by a commuting conversion, then by inversion we have Q1 = Q0,Q′ such that
Q0⇒ p′ ∶W0 and x ∶ ∣W0∣;Q′ ⊢ C0 ∶W ′. In that case, x ∶ ∣W0∣;Q′,Q2 ⊢ p← C0;C2 ∶W
and so ⋅;Q0,Q′,Q2 ⊢ x ⇐ lift p′;p← C0;C2 ∶W .

Theorem 6 (Progress). Suppose Ð→H satisfies progress with respect to the values vh.

1. If ⋅ ⊢ t ∶A then either t is a value vc or there is some t′ such that tÐ→ t′.

2. If ⋅;Q ⊢ C ∶W then either C is normal or there is some C ′ such that C Ô⇒ C ′.

Proof.
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1. By the progress hypothesis for Ð→H, either t = vh for some vh or there exists
some t′ such that t Ð→H t′ (in which case t Ð→ t′ as well). In first case however, t is
either a value in the original host language (v), or t = box p⇒ C, where

Ω⇒ p ∶W1 ⋅;Ω ⊢ C ∶W2

⋅ ⊢ box p⇒ C ∶Box W1 W2

If p is not concrete forW1, then box p⇒ C can step via the η rule. If p is concrete, then
by the inductive hypothesis, C is either normal already (in which case so is box p⇒ C),
or there is some C ′ such that C Ô⇒ C ′. In that case, box p⇒ C Ð→b box p⇒ C ′.

2. By induction on the typing judgment of C.

(a) If the last rule in the derivation is

⋅ ⊢ t ∶ Box W1 W2 Ω⇒ p ∶W1

⋅;Ω ⊢ unbox t p ∶W2

then by the inductive hypothesis, either t can take a step to some t′, or t is a
value of the form box p′⇒ N . In the first case, unbox t pÔ⇒ unbox t′ p, and in
the second case, unbox t pÔ⇒ N {p′/p}.

(b) Next, suppose the last rule in the derivation is

Ω1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2 g ∈ G(W1,W2) ⋅;Ω2,Ω ⊢ C ∶W
⋅;Ω1,Ω ⊢ p2 ← gate g p1 ;C ∶W

If C is not concrete, then p2 ← gate g p1;C can step via an η rule. Otherwise, C
is either normal, in which case p2 ← gate g p1;C is also normal, or C can take a
step, in which case so can p2 ← gate g p1;C by the structural rule.

(c) Suppose the circuit is

⋅;Ω1 ⊢ C ∶W ⋅;Ω0,Ω2 ⊢ C ′ ∶W ′

⋅;Ω1,Ω2 ⊢ p← C;C ′ ∶W ′

By the inductive hypothesis, either C can take a step, in which case so can
p← C;C ′, or C is normal. The latter cases are straightforward:

p← output p′;C Ô⇒ C{p′/p}
p← (p2← gate g p1;C0);C Ô⇒ p2← gate g p1;C0;p← C0;C

p← (x⇐ lift p0;C0);C Ô⇒ x⇐ lift p0;p← C0;C
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Theorem 7 (Normalization). Suppose that Ð→H is strongly normalizing with respect
to vh.

1. If ⋅ ⊢ t ∶A, there exists some value vc such that tÐ→∗ vc.

2. If ⋅;Q ⊢ C ∶W , there exists some normal circuit N such that C Ô⇒∗ N .

Proof. By induction on the number of constructors in the term and circuit.

1. By the normalization property for Ð→H, there is some value vc such that tÐ→∗H
vc. This value vc is either a regular host language value v, in which case we are done,
or it is some uninterpreted boxed circuit box (p ∶W )⇒ C. If p is concrete with respect
to W , then by the inductive hypothesis, there is some N such that C Ô⇒∗ N , and
so box p⇒ C Ð→∗ box p⇒ N .

If p is not concrete, then by an η-expansion, there is some p′ that is concrete for
W and box p ⇒ C Ð→b box p′ ⇒ C {p′/p}. By induction we know that C {p′/p}
normalizes (since the number of constructors in C {p′/p} is the same as the number
in C), and thus so does box p⇒ C.

2. If C is an output or lifting circuit then it is already normal. If C is an unboxing
operator of the form

⋅ ⊢ t ∶ Box W1 W2 Ω⇒ p ∶W1

⋅;Ω ⊢ unbox t p ∶W2

then by the inductive hypothesis, there is some box p′⇒ N such that tÐ→∗ box p′⇒
N , so unbox t pÐ→∗ N {p/p′}, which is also normal.

Next, consider a gate application:

Ω1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2 g ∈ G(W1,W2) ⋅;Ω2,Ω ⊢ C ∶W
⋅;Ω1,Ω ⊢ p2 ← gate g p1 ;C ∶W

Again, if C is concrete, it normalizes by the inductive hypothesis; otherwise there
is some Q2 ⇒ p′2 ∶W2 where C {p′2/p2} normalizes to some N , in which case p2 ←
gate g p1;C Ô⇒∗ p′2 ← gate g p1;N .

Finally, consider a composition operator:

⋅;Ω1 ⊢ C ∶W ⋅;Ω0,Ω2 ⊢ C ′ ∶W ′

⋅;Ω1,Ω2 ⊢ p← C;C ′ ∶W ′

By the inductive hypothesis, there is some N such that C Ô⇒∗ N . If N = output p′,
then p ← C;C ′ Ô⇒∗ C ′ {p′/p}, which normalizes by the inductive hypothesis for C ′.
If N = p2 ← gate g p1;C0, then p ← C0;C ′ normalizes to some N ′ by the inductive
hypothesis, and so

p← C;C ′Ô⇒∗ p2 ← gate g p1;N
′.
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Finally, if N = x ⇐ lift p′;C0, then

p← C;C ′Ô⇒ x ⇐ lift p′;p← C0;C
′,

which is immediately normal.

B.2 Soundness of denotational semantics
Theorem 8 (Soundness). If ⋅;Q ⊢ C ∶W and C Ô⇒ C ′, then

JQ ⊢ C ∶W K = JQ ⊢ C ′ ∶W K.
Proof. By induction on the typing judgment.

If C is

⋅;Q′ ⊢ C ∶W π ∶ Q ≡ Q′

⋅;Q ⊢ C ∶W
TypClosedConcretePermute

and C Ô⇒ C ′, then by the inductive hypothesis,

JQ ⊢ C ∶W K = JQ′ ⊢ C ∶W K ○ [π]∗
= JQ′ ⊢ C ′ ∶W K ○ [π]∗ = JQ ⊢ C ′ ∶W K

If

⋅ ⊢ t ∶Box W1 W2 Q⇒ p ∶W1

⋅;Q ⊢ unbox t p ∶W2
TypClosedConcreteUnbox

and the circuit steps by a structural rule with tÐ→ t′, then, assuming host is strongly
normalizing we have some box p′⇒ N such that t, t′ Ð→∗ box p′⇒ N . Then

JQ ⊢ unbox t p ∶W2K = JQ ⊢ unbox t′ p ∶W2K = JQ′ ⊢ N ∶W2K
Suppose

Ω1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2 g ∈ G(W1,W2) ⋅;Ω2,Ω ⊢ C ∶W
⋅;Ω1,Ω ⊢ p2 ← gate g p1 ;C ∶W

If the circuit steps via a structural rule, the result is immediate. If it steps via an η rule
to p′2 ← gate g p1;C {p′2/p2}, then the result follows from the fact that JC {p′2/p2}K =JCK (Lemma 7).
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Next, consider

⋅;Q1 ⊢ C1 ∶W Ω0⇒ p ∶W ⋅;Ω0,Q2 ⊢ C2 ∶W ′

⋅;Q1,Q2 ⊢ p← C1;C2 ∶W ′

If the circuit steps via a structural rule, the result follows immediately. Otherwise,
we know C1 is normal, and the circuit stepped via a β or commuting conversion rule.
We proceed by a further case analysis on the typing judgment of C1.

For a permutation rule π ∶ Q1 ≡ Q′1, by induction we know that

JQ′1,Q2 ⊢ p← C1;C2 ∶W ′K = JQ′1,Q2 ⊢ C ′ ∶W ′K
But then

JQ1,Q2 ⊢ p← C1;C2 ∶W ′K
= JΩ0,Q2 ⊢ C2 ∶W ′K ○ (JQ1 ⊢ C1 ∶W K ⊗ I∗)
= JΩ0,Q2 ⊢ C2 ∶W ′K ○ ((JQ′1 ⊢ C1 ∶W K ○ [π]∗) ⊗ I∗)
= JΩ0,Q2 ⊢ C2 ∶W ′K ○ (JQ′1 ⊢ C1 ∶W K ⊗ I∗) ○ ([π] ⊗ I)∗

= JQ′1,Q2 ⊢ p← C1;C2 ∶W ′K ○ ([π] ⊗ I)∗

= JQ1,Q2 ⊢ p← C1;C2 ∶W ′K
For C1 = output p′ with Q1⇒ p′ ∶W , where

p← C1;C2Ô⇒ C2 {p′/p},

we know

JQ1,Q2 ⊢ p← output p′;C2 ∶W ′K
= JΩ0,Q2 ⊢ C2 ∶W ′K ○ (JQ1 ⊢ output p′ ∶W K ⊗ I∗)
= JΩ0,Q2 ⊢ C2 ∶W ′K ○ (I∗ ⊗ I∗)
= JΩ0,Q2 ⊢ C2 ∶W ′K = JQ1,Q2 ⊢ C2 {p′/p} ∶W ′K

by Lemma 7.
If C1 is

g ∈ G(W1,W2) Q′1⇒ p1 ∶W1 Ω2⇒ p2 ∶W2 ⋅;Ω2,Q′ ⊢ C0 ∶W
⋅;Q′1,Q′ ⊢ p2 ← gate g p1;C0 ∶W

and steps via a commuting conversion

p← C1;C2Ô⇒ p2 ← gate g p1;p← C0;C2

149



then

JQ′1,Q′,Q2 ⊢ p← (p2 ← gate g p1;C0);C2 ∶W ′K
= JΩ0,Q2 ⊢ C2 ∶W ′K ○ (JQ′1,Q′ ⊢ p2 ← gate g p1;C0 ∶W K ⊗ I∗)
= JΩ0,Q2 ⊢ C2 ∶W ′K ○ ((JΩ2,Q′ ⊢ C0 ∶W K ○ (JgK ⊗ I∗)) ⊗ I∗)
= JΩ0,Q2 ⊢ C2 ∶W ′K ○ (JΩ2,Q′ ⊢ C0 ∶W K ⊗ I∗) ○ (JgK ⊗ I∗ ⊗ I∗)
= JΩ2,Q′,Q2 ⊢ p← C0;C2 ∶W ′K ○ (JgK ⊗ I∗)
= JQ′1,Q′,Q2 ⊢ p2 ← gate g p1;p← C0;C2 ∶W ′K

Finally, if C1 is
Q0⇒ p0 ∶W0 x ∶ ∣W0∣;Q′ ⊢ C0 ∶W

⋅;Q0,Q′ ⊢ x ⇐ lift p0;C0 ∶W

and steps via a commuting conversion

p← C1;C2Ô⇒ x ⇐ lift p0;p← C0;C2

then

JQ0,Q′,Q2 ⊢ p← (x ⇐ lift p0;C0);C2 ∶W ′K
= JΩ0,Q2 ⊢ C2 ∶W ′K ○ (JQ0,Q′ ⊢ x ⇐ lift p0;C0 ∶W K ⊗ I∗)

= JC2K ○ ⎛⎝⎛⎝ ∑⊢v∶∣W0∣
JQ′ ⊢ C0{v/x} ∶W K ○ ([v ∶ ∣W0∣]† ⊗ I)∗

⎞
⎠
⊗ I∗
⎞
⎠

= JC2K ○ ∑
⊢v∶∣W0∣

((JQ′ ⊢ C0{v/x} ∶W K ○ ([v ∶ ∣W0∣]† ⊗ I)∗) ⊗ I∗)

= JC2K ○ ∑
⊢v∶∣W0∣

(JC0{v/x}K ⊗ I∗) ○ ([v ∶ ∣W0∣]† ⊗ I∗ ⊗ I∗)

= ∑
⊢v∶∣W0∣

JC2K ○ (JC0{v/x}K ⊗ I∗) ○ ([v ∶ ∣W0∣]† ⊗ I∗)

= ∑
⊢v∶∣W0∣

Jp← C0{v/x};C2K ○ ([v ∶ ∣W0∣]† ⊗ I∗)

= Jx ⇐ lift p0;p← C0;C2K
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Appendix C

Qwire Documentation

C.1 Prelim.v

Lemma xorb_nb_b : ∀ b, ¬ b ⊕ b = true.

Lemma xorb_b_nb : ∀ b, b ⊕ ¬ b = true.

Lemma xorb_involutive_l : ∀ b b', b ⊕ (b ⊕ b') = b'.

Lemma xorb_involutive_r : ∀ b b', b ⊕ b' ⊕ b' = b.

Lemma andb_xorb_dist : ∀ b b1 b2, b && (b1 ⊕ b2) = (b && b1) ⊕ (b && b2).

Lemma beq_reflect : ∀ x y, reflect (x = y) (x =? y).

Lemma blt_reflect : ∀ x y, reflect (x < y) (x <? y).

Lemma ble_reflect : ∀ x y, reflect (x ≤ y) (x ≤? y).

Lemma if_dist : ∀ (A B : Type) (b : B) (f : A → B) (x y : A),
f (if b then x else y) = if b then f x else f y.

Lemma update_length : ∀ A (l: list A) (a : A) (n : N),
length (update_at l n a) = length l.

Lemma nth_nil : ∀ {A} x, ([] : list A) !! x = None.

Lemma repeat_combine : ∀ A n1 n2 (a : A),
List.repeat a n1 ++ List.repeat a n2 = List.repeat a (n1 + n2).

Lemma rev_repeat : ∀ A (a : A) n, rev (repeat a n) = repeat a n.
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Lemma firstn_repeat_le : ∀ A (a : A) m n, (m ≤ n) →
firstn m (repeat a n) = repeat a m.

Lemma firstn_repeat_ge : ∀ A (a : A) m n, (m ≥ n) →
firstn m (repeat a n) = repeat a n.

Lemma firstn_repeat : ∀ A (a : A) m n,
firstn m (repeat a n) = repeat a (min m n).

Lemma skipn_repeat : ∀ A (a : A) m n,
skipn m (repeat a n) = repeat a (n-m).

Lemma skipn_length : ∀ {A} (l : list A) n,
length (skipn n l) = (length l - n).

Lemma disjoint_nil_l : ∀ ls, nil � ls.

Lemma disjoint_nil_r : ∀ ls, ls � nil.

Lemma disjoint_cons : ∀ a ls1 ls2,
((negb (inb a ls1)) && disjoint ls1 ls2 = disjoint ls1 (a :: ls2)).

Lemma disjoint_symm : ∀ ls1 ls2, disjoint ls1 ls2 = disjoint ls2 ls1.

Lemma eqb_neq : ∀ x y, x ≠ y → x =? y = false.

Lemma lookup_app : ∀ x ls1 ls2,
lookup x (ls1 ++ ls2) = if inb x ls1 then lookup x ls1
else (lookup x ls2 + length ls1).

Lemma subset_app : ∀ ls1 ls2 ls, (ls1 ++ ls2) ⊆ ls → ls1 ⊆ ls ∧ ls2 ⊆ ls.

Lemma seq_app : ∀ offset1 offset2 start,
seq start offset1 ++ seq (start + offset1) offset2
= seq start (offset1 + offset2).

Lemma inb_fmap_S : ∀ ls x,
inb (S x) (fmap S ls) = inb x ls.

Lemma double_mult : ∀ (n : N), (n + n = 2 * n).

Lemma pow_two_succ_l : ∀ x, (2^x * 2 = 2 ^ (x + 1)).

Lemma pow_two_succ_r : ∀ x, (2 * 2^x = 2 ^ (x + 1)).
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Lemma double_pow : ∀ (n : N), (2^n + 2^n = 2^(n+1)).

Lemma pow_components : ∀ (a b m n : N), a = b → m = n → (a^m = b^n).

C.2 Monad.v
Lemma fmap_compose' {f} (F : Functor f) `{Functor_Correct f} :
∀ {A B C} (g : A → B) (h : B → C) (a : f A),
fmap h (fmap g a) = fmap (h ○ g) a.

Lemma bind_eq : ∀ {A B m} `{Monad m} (a a' : m A) (f f' : A → m B),
a = a' →
(∀ x, f x = f' x) →
bind a f = bind a' f'.

Lemma fmap_app : ∀ {A B} (f : A → B) ls1 ls2,
fmap f (ls1 ++ ls2) = fmap f ls1 ++ fmap f ls2.

C.3 Monoid.v
Lemma M_unit_l : ∀ a, ⊺ ○ a = a.

Lemma M_comm_assoc : ∀ a b c, a ○ b ○ c = b ○ a ○ c.

Lemma M_comm_assoc_r : ∀ a b c, a ○ (b ○ c) = b ○ (a ○ c).

Lemma M_absorb_l : ∀ a, � ○ a = �.

Lemma translate_Some : ∀ {X} `{Translate X A} (x : A),
⟨Some x⟩ = ⟨x⟩.

Lemma flatten_correct' : ∀ (ls1 ls2 : list A),
⟨ls1⟩ ○ ⟨ls2⟩ = ⟨ls1 ++ ls2⟩.

Lemma option_list_correct : ∀ (o1 o2 : option (list A)),
⟨o1⟩ ○ ⟨o2⟩ = ⟨ do ls1 ← o1;
do ls2 ← o2;
return_ (ls1 ++ ls2) ⟩.

Lemma flatten_correct : ∀ e, ⟨e⟩ = ⟨flatten e⟩.
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Lemma index_wrt_cons : ∀ idx a values,
index_wrt (a :: values) (fmap S idx) = index_wrt values idx.

Lemma index_wrt_default : ∀ (ls : list A),
index_wrt ls (nats_lt (length ls)) = ls.

Lemma split_list : ∀ values ls1 ls2,
⟨index_wrt values (ls1 ++ ls2)⟩ =
⟨index_wrt values ls1⟩ ○ ⟨index_wrt values ls2⟩.

Lemma in_interp_nats : ∀ i a values idx,
In i idx →
index values i = Some a →
In a (index_wrt values idx).

Lemma in_index : ∀ i a values,
⟨index values i⟩ = a → a = � ∨ In a values.

Lemma in_index_wrt : ∀ a idx values,
In a (index_wrt values idx) →
a = � ∨ In a values.

Lemma interp_permutation : ∀ (values : list A) (idx1 idx2 : list N),
Permutation idx1 idx2 →
⟨index_wrt values idx1⟩ = ⟨index_wrt values idx2⟩.

Lemma permutation_reflection : ∀ ls1 ls2,
@permutation N _ PeanoNat.Nat.eq_dec ls1 ls2 → Permutation ls1 ls2.

Lemma meq_multiplicity : ∀ (ls1 ls2 : list N),
(∀ x, In x ls1 ∨ In x ls2 →
multiplicity (contents ls1) x = multiplicity (contents ls2) x) →
meq (contents ls1) (contents ls2).

Lemma interp_0 : ∀ (ls : list A),
In � ls → ⟨ls⟩ = �.

C.4 Matrix.v

Lemma mat_equiv_refl : ∀ m n (A : Matrix m n), mat_equiv A A.

Lemma mat_equiv_eq : ∀ {m n : N} (A B : Matrix m n),
WF_Matrix m n A →
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WF_Matrix m n B →
mat_equiv A B →
A = B.

Lemma WF_list2D_to_matrix : ∀ m n li,
length li = m →
(∀ li', In li' li → length li' = n) →
WF_Matrix m n (list2D_to_matrix li).

Lemma M23eq : M23 = M23'.

Lemma Csum_0 : ∀ f n, (∀ x, f x = C0) → Csum f n = 0.

Lemma Csum_1 : ∀ f n, (∀ x, f x = C1) → Csum f n = INR n.

Lemma Csum_constant : ∀ c n, Csum (fun x ⇒ c) n = INR n * c.

Lemma Csum_eq : ∀ f g n, f = g → Csum f n = Csum g n.

Lemma Csum_0_bounded : ∀ f n, (∀ x, (x < n) → f x = C0) → Csum f n = 0.

Lemma Csum_eq_bounded : ∀ f g n, (∀ x, (x < n) → f x = g x) →
Csum f n = Csum g n.

Lemma Csum_plus : ∀ f g n,
Csum (fun x ⇒ f x + g x) n = Csum f n + Csum g n.

Lemma Csum_mult_l : ∀ c f n, c * Csum f n = Csum (fun x ⇒ c * f x) n.

Lemma Csum_mult_r : ∀ c f n, Csum f n * c = Csum (fun x ⇒ f x * c) n.

Lemma Csum_conj_distr : ∀ f n, (Csum f n) ∗ = Csum (fun x ⇒ (f x)∗) n.

Lemma Csum_extend_r : ∀ n f, Csum f n + f n = Csum f (S n).

Lemma Csum_extend_l : ∀ n f,
f O + Csum (fun x ⇒ f (S x)) n = Csum f (S n).

Lemma Csum_unique : ∀ k (f : N → C) n,
(∃ x, (x < n) ∧ f x = k ∧ (∀ x', x ≠ x' → f x' = 0)) →
Csum f n = k.

Lemma Csum_sum : ∀ m n f, Csum f (m + n) =
Csum f m + Csum (fun x ⇒ f (m + x)) n.
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Lemma Csum_product : ∀ m n f g, n ≠ O →
Csum f m * Csum g n =
Csum (fun x ⇒ f (x / n) * g (x mod n)) (m * n).

Lemma Csum_ge_0 : ∀ f n, (∀ x, 0 ≤ fst (f x)) → 0 ≤ fst (Csum f n).

Lemma Csum_member_le : ∀ (f : N → C) (n : N), (∀ x, 0 ≤ fst (f x)) →
(∀ x, (x < n) → fst (f x) ≤ fst (Csum f n)).

Lemma WF_Zero : ∀ {m n : N}, WF_Matrix m n (Zero m n).

Lemma WF_Id : ∀ {n : N}, WF_Matrix n n (Id n).

Lemma WF_I1 : WF_Matrix 1 1 I1.

Lemma WF_scale : ∀ {m n : N} (r : C) (A : Matrix m n),
WF_Matrix m n A → WF_Matrix m n (scale r A).

Lemma WF_plus : ∀ {m n} (A B : Matrix m n),
WF_Matrix m n A → WF_Matrix m n B → WF_Matrix m n (A .+ B).

Lemma WF_mult : ∀ {m n o : N} (A : Matrix m n) (B : Matrix n o),
WF_Matrix m n A → WF_Matrix n o B → WF_Matrix m o (A × B).

Lemma WF_kron : ∀ {m n o p q r : N} (A : Matrix m n) (B : Matrix o p),
q = m * o → r = n * p →
WF_Matrix m n A → WF_Matrix o p B → WF_Matrix q r (A ⊗ B).

Lemma WF_transpose : ∀ {m n : N} (A : Matrix m n),
WF_Matrix m n A → WF_Matrix n m A⊺.

Lemma WF_adjoint : ∀ {m n : N} (A : Matrix m n),
WF_Matrix m n A → WF_Matrix n m A†.

Lemma WF_outer_product : ∀ {n} (v : Matrix n 1),
WF_Matrix n 1 v →
WF_Matrix n n (outer_product v).

Lemma WF_big_kron : ∀ n m (l : list (Matrix m n)) (A : Matrix m n),
(∀ i, WF_Matrix m n (nth i l A)) →
WF_Matrix (m^(length l)) (n^(length l)) (⊗ l).

Lemma WF0_Zero_l :∀ (n : N) (A : Matrix 0 n),
WF_Matrix _ _ A →
A = Zero 0 n.
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Lemma WF0_Zero_r :∀ (n : N) (A : Matrix n 0),
WF_Matrix _ _ A →
A = Zero n 0.

Lemma WF0_Zero :∀ (A : Matrix 0 0), WF_Matrix _ _ A → A = Zero 0 0.

Lemma Id0_Zero : 'I_ 0 = Zero 0 0.

Lemma trace_plus_dist : ∀ (n : N) (A B : Square n),
trace (A .+ B) = (trace A + trace B).

Lemma trace_mult_dist : ∀ n p (A : Square n),
trace (p .* A) = (p * trace A).

Lemma Mplus_0_l : ∀ (m n : N) (A : Matrix m n), Zero m n .+ A = A.

Lemma Mplus_0_r : ∀ (m n : N) (A : Matrix m n), A .+ Zero m n = A.

Lemma Mmult_0_l : ∀ (m n o : N) (A : Matrix n o), Zero m n × A = Zero m o.

Lemma Mmult_0_r : ∀ (m n o : N) (A : Matrix m n), A × Zero n o = Zero m o.

Lemma Mmult_1_l_gen: ∀ (m n : N) (A : Matrix m n) (x z k : N),
k ≤ m →
(k ≤ x → Csum (fun y : N ⇒ ((Id m) x y * A y z)) k = C0) ∧
(k > x → Csum (fun y : N ⇒ ((Id m) x y * A y z)) k = A x z).

Lemma Mmult_1_l_mat_eq : ∀ (m n : N) (A : Matrix m n), Id m × A ≡ A.

Lemma Mmult_1_l: ∀ (m n : N) (A : Matrix m n),
WF_Matrix m n A → Id m × A = A.

Lemma Mmult_1_r_gen: ∀ (m n : N) (A : Matrix m n) (x z k : N),
k ≤ n →
(k ≤ z → Csum (fun y : N ⇒ (A x y * (Id n) y z)) k = C0) ∧
(k > z → Csum (fun y : N ⇒ (A x y * (Id n) y z)) k = A x z).

Lemma Mmult_1_r_mat_eq : ∀ (m n : N) (A : Matrix m n), A × Id n ≡ A.

Lemma Mmult_1_r: ∀ (m n : N) (A : Matrix m n),
WF_Matrix m n A → A × Id n = A.

Lemma Mmult_inf_l : ∀(m n : N) (A : Matrix m n),
WF_Matrix m n A → ∞I × A = A.
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Lemma Mmult_inf_r : ∀(m n : N) (A : Matrix m n),
WF_Matrix m n A → A × ∞I = A.

Lemma kron_0_l : ∀ (m n o p : N) (A : Matrix o p),
Zero m n ⊗ A = Zero (m * o) (n * p).

Lemma kron_0_r : ∀ (m n o p : N) (A : Matrix m n),
A ⊗ Zero o p = Zero (m * o) (n * p).

Lemma kron_1_r : ∀ (m n : N) (A : Matrix m n), A ⊗ Id 1 = A.

Lemma kron_1_l : ∀ (m n : N) (A : Matrix m n),
WF_Matrix m n A → Id 1 ⊗ A = A.

Theorem transpose_involutive : ∀ (m n : N) (A : Matrix m n), (A⊺)⊺ = A.

Theorem adjoint_involutive : ∀ (m n : N) (A : Matrix m n), A†† = A.

Lemma id_transpose_eq : ∀ n, (Id n)⊺ = (Id n).

Lemma zero_transpose_eq : ∀ m n, (Zero m n)⊺ = (Zero n m).

Lemma id_adjoint_eq : ∀ n, (Id n)† = (Id n).

Lemma zero_adjoint_eq : ∀ m n, (Zero m n)† = (Zero n m).

Theorem Mplus_comm : ∀ (m n : N) (A B : Matrix m n),
A .+ B = B .+ A.

Theorem Mplus_assoc : ∀ (m n : N) (A B C : Matrix m n),
A .+ B .+ C = A .+ (B .+ C).

Theorem Mmult_assoc : ∀ (m n o p : N) (A : Matrix m n) (B : Matrix n o)
(C: Matrix o p), A × B × C = A × (B × C).

Lemma Mmult_plus_distr_l : ∀ (m n o : N) (A : Matrix m n)
(B C : Matrix n o), A × (B .+ C) = A × B .+ A × C.

Lemma Mmult_plus_distr_r : ∀ (m n o : N) (A B : Matrix m n)
(C : Matrix n o), (A .+ B) × C = A × C .+ B × C.

Lemma kron_plus_distr_l : ∀ (m n o p : N) (A : Matrix m n)
(B C : Matrix o p), A ⊗ (B .+ C) = A ⊗ B .+ A ⊗ C.
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Lemma kron_plus_distr_r : ∀ (m n o p : N) (A B : Matrix m n)
(C : Matrix o p), (A .+ B) ⊗ C = A ⊗ C .+ B ⊗ C.

Lemma Mscale_0_l : ∀ (m n : N) (A : Matrix m n), C0 .* A = Zero m n.

Lemma Mscale_0_r : ∀ (m n : N) (c : C), c .* Zero m n = Zero m n.

Lemma Mscale_1_l : ∀ (m n : N) (A : Matrix m n), C1 .* A = A.

Lemma Mscale_1_r : ∀ (n : N) (c : C),
c .* 'I_ n = fun x y ⇒ if (x =? y) && (x <? n) then c else C0.

Lemma Mscale_mult_dist_l : ∀ (m n o : N) (x : C) (A : Matrix m n)
(B : Matrix n o), ((x .* A) × B) = x .* (A × B).

Lemma Mscale_mult_dist_r : ∀ (m n o : N) (x : C) (A : Matrix m n)
(B : Matrix n o), (A × (x .* B)) = x .* (A × B).

Lemma Mscale_kron_dist_l : ∀ (m n o p : N) (x : C) (A : Matrix m n)
(B : Matrix o p), ((x .* A) ⊗ B) = x .* (A ⊗ B).

Lemma Mscale_kron_dist_r : ∀ (m n o p : N) (x : C) (A : Matrix m n)
(B : Matrix o p), (A ⊗ (x .* B)) = x .* (A ⊗ B).

Lemma Minv_unique : ∀ (n : N) (A B C : Square n),
WF_Matrix n n A → WF_Matrix n n B → WF_Matrix n n C →
Minv A B → Minv A C → B = C.

Lemma Minv_symm : ∀ (n : N) (A B : Square n), Minv A B → Minv B A.

Lemma Minv_left : ∀ (n : N) (A B : Square n),
A × B = Id n → Minv A B.

Lemma Minv_right : ∀ (n : N) (A B : Square n),
B × A = Id n → Minv A B.

Lemma kron_mixed_product : ∀ (m n o p q r : N)
(A : Matrix m n) (B : Matrix p q ) (C : Matrix n o) (D : Matrix q r),
(A ⊗ B) × (C ⊗ D) = (A × C) ⊗ (B × D).

Lemma Mplus_tranpose : ∀ (m n : N) (A : Matrix m n) (B : Matrix m n),
(A .+ B)⊺ = A⊺ .+ B⊺.

Lemma Mmult_tranpose : ∀ (m n o : N) (A : Matrix m n) (B : Matrix n o),
(A × B)⊺ = B⊺ × A⊺.
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Lemma kron_transpose : ∀ (m n o p : N) (A : Matrix m n) (B : Matrix o p),
(A ⊗ B)⊺ = A⊺ ⊗ B⊺.

Lemma Mplus_adjoint : ∀ (m n : N) (A : Matrix m n) (B : Matrix m n),
(A .+ B)† = A† .+ B†.

Lemma Mmult_adjoint : ∀ (m n o : N) (A : Matrix m n) (B : Matrix n o),
(A × B)† = B† × A†.

Lemma kron_adjoint : ∀ (m n o p : N) (A : Matrix m n) (B : Matrix o p ),
(A ⊗ B)† = A† ⊗ B†.

Lemma id_kron : ∀ (m n : N), Id m ⊗ Id n = Id (m * n).

Lemma outer_product_eq : ∀ m (ϕ ψ : Matrix m 1), ϕ = ψ →
outer_product ϕ = outer_product ψ.

Lemma outer_product_kron : ∀ m n (ϕ : Matrix m 1) ψ( : Matrix n 1),
outer_product ϕ ⊗ outer_product ψ = outer_product (ϕ ⊗ ψ).

Lemma divmod_eq : ∀ x y n z,
fst (Nat.divmod x y n z) = (n + fst (Nat.divmod x y 0 z)).

Lemma divmod_S : ∀ x y n z,
fst (Nat.divmod x y (S n) z) = (S n + fst (Nat.divmod x y 0 z)).

Lemma divmod_0q0 : ∀ x q, fst (Nat.divmod x 0 q 0) = (x + q).

Lemma divmod_0 : ∀ x, fst (Nat.divmod x 0 0 0) = x.

Lemma kron_shadow : @kron = kron'.

Lemma Mmult_shadow : @Mmult = Mmult'.

C.5 Quantum.v

Lemma bool_to_matrix_eq : ∀ b, bool_to_matrix b = bool_to_matrix' b.

Lemma bool_to_ket_matrix_eq : ∀ b,
outer_product (bool_to_ket b) = bool_to_matrix b.

Lemma hadamard_1 : hadamard_k 1 = hadamard.
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Lemma cnot_eq : cnot = control σx.

Lemma MmultX1 : σx × ∣1⟩ = ∣0⟩.

Lemma Mmult1X : ⟨1∣ × σx = ⟨0∣.

Lemma MmultX0 : σx × ∣0⟩ = ∣1⟩.

Lemma Mmult0X : ⟨0∣ × σx = ⟨1∣.

Lemma swap_swap : swap × swap = Id 4.

Lemma swap_swap_r : ∀ n A, WF_Matrix n 4 A →
A × swap × swap = A.

Lemma WF_bra0 : WF_Matrix 1 2 ⟨0∣.

Lemma WF_bra1 : WF_Matrix 1 2 ⟨1∣.

Lemma WF_ket0 : WF_Matrix 2 1 ∣0⟩.

Lemma WF_ket1 : WF_Matrix 2 1 ∣1⟩.

Lemma WF_braket0 : WF_Matrix 2 2 ∣0⟩⟨0∣.

Lemma WF_braket1 : WF_Matrix 2 2 ∣1⟩⟨1∣.

Lemma WF_bool_to_ket : ∀ b, WF_Matrix 2 1 (bool_to_ket b).

Lemma WF_bool_to_matrix : ∀ b, WF_Matrix 2 2 (bool_to_matrix b).

Lemma WF_bool_to_matrix' : ∀ b, WF_Matrix 2 2 (bool_to_matrix' b).

Lemma WF_bools_to_matrix : ∀ l,
WF_Matrix (2^(length l)) (2^(length l)) (bools_to_matrix l).

Lemma WF_hadamard : WF_Matrix 2 2 hadamard.

Lemma WF_σx : WF_Matrix 2 2 σx.

Lemma WF_σy : WF_Matrix 2 2 σy.

Lemma WF_σz : WF_Matrix 2 2 σz.
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Lemma WF_cnot : WF_Matrix 4 4 cnot.

Lemma WF_swap : WF_Matrix 4 4 swap.

Lemma WF_phase : ∀ φ, WF_Matrix 2 2 (phase_shift φ).

Lemma WF_control : ∀ (n m : N) (U : Matrix n n),
(m = 2 * n) → WF_Matrix n n U → WF_Matrix m m (control U).

Lemma H_unitary : WF_Unitary hadamard.

Lemma σx_unitary : WF_Unitary σx.

Lemma σy_unitary : WF_Unitary σy.

Lemma σz_unitary : WF_Unitary σz.

Lemma phase_unitary : ∀ φ, @WF_Unitary 2 (phase_shift φ).

Lemma control_unitary : ∀ n (A : Matrix n n),
WF_Unitary A → WF_Unitary (control A).

Lemma transpose_unitary : ∀ n (A : Matrix n n),
WF_Unitary A → WF_Unitary (A†).

Lemma cnot_unitary : WF_Unitary cnot.

Lemma id_unitary : ∀ n, WF_Unitary (Id n).

Lemma swap_unitary : WF_Unitary swap.

Lemma kron_unitary : ∀ {m n} (A : Matrix m m) (B : Matrix n n),
WF_Unitary A → WF_Unitary B → WF_Unitary (A ⊗ B).

Lemma Mmult_unitary : ∀ (n : N) (A : Square n) (B : Square n),
WF_Unitary A → WF_Unitary B → WF_Unitary (A × B).

Lemma hadamard_sa : hadamard† = hadamard.

Lemma σx_sa : σx† = σx.

Lemma σy_sa : σy† = σy.

Lemma σz_sa : σz† = σz.
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Lemma cnot_sa : cnot† = cnot.

Lemma swap_sa : swap† = swap.

Lemma control_adjoint : ∀ n (U : Square n), (control U)† = control (U†).

Lemma control_sa : ∀ (n : N) (A : Square n),
A† = A → (control A)† = (control A).

Lemma phase_adjoint : ∀ φ, (phase_shift φ)† = phase_shift (-φ).

Lemma braket0_sa : ∣0⟩⟨0∣† = ∣0⟩⟨0∣.
Lemma braket1_sa : ∣1⟩⟨1∣† = ∣1⟩⟨1∣.
Lemma braket0_psd : positive_semidefinite ∣0⟩⟨0∣.

Lemma braket1_psd : positive_semidefinite ∣1⟩⟨1∣.

Lemma H0_psd : positive_semidefinite (hadamard × ∣0⟩⟨0∣ × hadamard).

Lemma WF_Pure : ∀ {n} (ρ : Density n), Pure_State ρ → WF_Matrix n n ρ.

Lemma WF_Mixed : ∀ {n} (ρ : Density n), Mixed_State ρ → WF_Matrix n n ρ.

Lemma pure0 : Pure_State ∣0⟩⟨0∣.

Lemma pure1 : Pure_State ∣1⟩⟨1∣.

Lemma pure_id1 : Pure_State ('I_ 1).

Lemma pure_dim1 : ∀ (ρ : Square 1), Pure_State ρ → ρ = 'I_ 1.

Lemma pure_state_kron : ∀ m n (ρ : Square m) (ϕ : Square n),
Pure_State ρ → Pure_State ϕ → Pure_State (ρ ⊗ ϕ).

Lemma mixed_state_kron : ∀ m n (ρ : Square m) (ϕ : Square n),
Mixed_State ρ → Mixed_State ϕ → Mixed_State (ρ ⊗ ϕ).

Lemma pure_state_trace_1 : ∀ {n} (ρ : Density n),
Pure_State ρ → trace ρ = 1.

Lemma mixed_state_trace_1 : ∀ {n} (ρ : Density n),
Mixed_State ρ → trace ρ = 1.

Lemma mixed_state_diag_in01 : ∀ {n} (ρ : Density n) i , Mixed_State ρ →
0 ≤ fst (ρ i i) ≤ 1.
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Lemma mixed_state_diag_real : ∀ {n} (ρ : Density n) i , Mixed_State ρ →
snd (ρ i i) = 0.

Lemma mixed_dim1 : ∀ (ρ : Square 1), Mixed_State ρ → ρ = 'I_ 1.

Lemma super_I : ∀ n ρ,
WF_Matrix n n ρ →
super ('I_n) ρ = ρ.

Lemma WF_super : ∀ m n (U : Matrix m n) (ρ : Square n),
WF_Matrix m n U → WF_Matrix n n ρ → WF_Matrix m m (super U ρ).

Lemma super_outer_product : ∀ m (ϕ : Matrix m 1) (U : Matrix m m),
super U (outer_product ϕ) = outer_product (U × ϕ).

Lemma WF_compose_super : ∀ m n p (g : Superoperator n p)
(f : Superoperator m n) (ρ : Square m),
WF_Matrix m m ρ →
(∀ A, WF_Matrix m m A → WF_Matrix n n (f A)) →
(∀ A, WF_Matrix n n A → WF_Matrix p p (g A)) →
WF_Matrix p p (compose_super g f ρ).

Lemma compose_super_correct : ∀ {m n p}
(g : Superoperator n p) (f : Superoperator m n),
WF_Superoperator g →
WF_Superoperator f →
WF_Superoperator (compose_super g f).

Lemma sum_super_correct : ∀ m n (f g : Superoperator m n),
WF_Superoperator f → WF_Superoperator g →
WF_Superoperator (sum_super f g).

Lemma pure_unitary : ∀ {n} (U ρ : Matrix n n),
WF_Unitary U → Pure_State ρ → Pure_State (super U ρ).

Lemma mixed_unitary : ∀ {n} (U ρ : Matrix n n),
WF_Unitary U → Mixed_State ρ → Mixed_State (super U ρ).

Lemma super_unitary_correct : ∀ {n} (U : Matrix n n),
WF_Unitary U → WF_Superoperator (super U).

Lemma compose_super_assoc : ∀ {m n p q}
(f : Superoperator m n) (g : Superoperator n p) (h : Superoperator p q),
compose_super (compose_super f g) h = compose_super f (compose_super g h).
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Lemma WF_Superoperator_compose : ∀ m n p (s : Superoperator n p)
(s' : Superoperator m n), WF_Superoperator s → WF_Superoperator s' →
WF_Superoperator (compose_super s s').

Lemma swap_spec : ∀ (q q' : Matrix 2 1), WF_Matrix 2 1 q →
WF_Matrix 2 1 q' → swap × (q ⊗ q') = q' ⊗ q.

Lemma swap_two_base : swap_two 2 1 0 = swap.

Lemma swap_second_two : swap_two 3 1 2 = Id 2 ⊗ swap.

Lemma swap_0_2 :
swap_two 3 0 2 = ('I_2 ⊗ swap) × (swap ⊗ 'I_2) × ('I_2 ⊗ swap).

C.6 Contexts.v

Lemma size_ntensor : ∀ n W, size_wtype (n ⊗ W) = (n * size_wtype W).

Lemma ctx_octx : ∀ Γ Γ', Valid Γ = Valid Γ' ↔ Γ = Γ'.

Lemma size_ctx_size_octx : ∀ (Γ : Ctx), size_ctx Γ = size_octx (Valid Γ).

Lemma size_ctx_app : ∀ (Γ1 Γ2 : Ctx),
size_ctx (Γ1 ++ Γ2) = (size_ctx Γ1 + size_ctx Γ2).

Lemma Singleton_size : ∀ x w Γ, SingletonCtx x w Γ → size_ctx Γ = 1.

Lemma singleton_singleton : ∀ x W,
SingletonCtx x W (singleton x W).

Lemma singleton_equiv : ∀ x W Γ,
SingletonCtx x W Γ → Γ = singleton x W.

Lemma singleton_size : ∀ x w, size_ctx (singleton x w) = 1.

Lemma merge_shadow : merge = fun Γ1 Γ2 ⇒
match Γ1 with
| Invalid ⇒ Invalid
| Valid Γ1' ⇒ match Γ2 with

| Invalid ⇒ Invalid
| Valid Γ2' ⇒ merge' Γ1' Γ2'
end

end.
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Lemma merge_merge' : ∀ (Γ1 Γ2 : Ctx), Γ1 ⋓ Γ2 = (merge' Γ1 Γ2).

Lemma merge_cancel_l : ∀ Γ Γ1 Γ2 , Γ1 = Γ2 → Γ ⋓ Γ1 = Γ ⋓ Γ2.

Lemma merge_cancel_r : ∀ Γ Γ1 Γ2 , Γ1 = Γ2 → Γ1 ⋓ Γ = Γ2 ⋓ Γ.

Lemma merge_I_l : ∀ Γ, Invalid ⋓ Γ = Invalid.

Lemma merge_I_r : ∀ Γ, Γ ⋓ Invalid = Invalid.

Lemma merge_valid : ∀ (Γ1 Γ2 : OCtx) (Γ : Ctx),
Γ1 ⋓ Γ2 = Valid Γ →
(∃ Γ1', Γ1 = Valid Γ1') ∧ (∃ Γ2', Γ2 = Valid Γ2').

Lemma merge_valid : ∀ (Γ1 Γ2 : OCtx) (Γ : Ctx),
Γ1 ⋓ Γ2 = Valid Γ →
{Γ1' : Ctx & Γ1 = Valid Γ1'} * {Γ2' : Ctx & Γ2 = Valid Γ2'}.

Lemma merge_invalid_iff : ∀ (o1 o2 : option WType) (Γ1 Γ2 : Ctx),
Valid (o1 :: Γ1) ⋓ Valid (o2 :: Γ2) = Invalid ↔
merge_wire o1 o2 = Invalid ∨ Γ1 ⋓ Γ2 = Invalid.

Lemma merge_nil_l : ∀ Γ, ∅ ⋓ Γ = Γ.

Lemma merge_nil_r : ∀ Γ, Γ ⋓ ∅ = Γ.

Lemma merge_comm : ∀ Γ1 Γ2, Γ1 ⋓ Γ2 = Γ2 ⋓ Γ1.

Lemma merge_assoc : ∀ Γ1 Γ2 Γ3, Γ1 ⋓ (Γ2 ⋓ Γ3) = Γ1 ⋓ Γ2 ⋓ Γ3.

Lemma cons_distr_merge : ∀ Γ1 Γ2,
cons_o None (Γ1 ⋓ Γ2) = cons_o None Γ1 ⋓ cons_o None Γ2.

Lemma merge_nil_inversion' : ∀ (Γ1 Γ2 : Ctx),
Γ1 ⋓ Γ2 = ∅ → (Γ1 = []) * (Γ2 = []).

Lemma merge_nil_inversion : ∀ (Γ1 Γ2 : OCtx),
Γ1 ⋓ Γ2 = ∅ → (Γ1 = ∅) * (Γ2 = ∅).

Lemma ctx_cons_inversion : ∀ (Γ Γ1 Γ2 : Ctx) o o1 o2,
Valid (o1 :: Γ1) ⋓ Valid (o2 :: Γ2) = Valid (o :: Γ) →
(Γ1 ⋓ Γ2 = Valid Γ) * (merge_wire o1 o2 = Valid [o]).

Lemma merge_singleton_append : ∀ W (Γ : Ctx),
Γ ⋓ (singleton (length Γ) W) = Valid (Γ ++ [Some W]).
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Lemma merge_offset : ∀ (n : N) (Γ1 Γ2 Γ : Ctx),
Valid Γ = Γ1 ⋓ Γ2 →
Valid (repeat None n ++ Γ1) ⋓ Valid (repeat None n ++ Γ2) =
Valid (repeat None n ++ Γ).

Lemma valid_valid : ∀ Γ, is_valid (Valid Γ).

Lemma valid_empty : is_valid ∅.

Lemma not_valid : not (is_valid Invalid).

Lemma valid_l : ∀ Γ1 Γ2, is_valid (Γ1 ⋓ Γ2) → is_valid Γ1.

Lemma valid_r : ∀ Γ1 Γ2, is_valid (Γ1 ⋓ Γ2) → is_valid Γ2.

Lemma valid_cons : ∀ (o1 o2 : option WType) (Γ1 Γ2 : Ctx),
is_valid (Valid (o1 :: Γ1) ⋓ Valid (o2 :: Γ2)) ↔
(is_valid (merge_wire o1 o2) ∧ is_valid (Γ1 ⋓ Γ2)).

Lemma valid_join : ∀ Γ1 Γ2 Γ3,
is_valid (Γ1 ⋓ Γ2) →
is_valid (Γ1 ⋓ Γ3) → is_valid (Γ2 ⋓ Γ3) → is_valid (Γ1 ⋓ Γ2 ⋓ Γ3).

Lemma valid_split : ∀ Γ1 Γ2 Γ3, is_valid (Γ1 ⋓ Γ2 ⋓ Γ3) →
is_valid (Γ1 ⋓ Γ2) ∧ is_valid (Γ1 ⋓ Γ3) ∧ is_valid (Γ2 ⋓ Γ3).

Lemma size_octx_merge : ∀ (Γ1 Γ2 : OCtx), is_valid (Γ1 ⋓ Γ2) →
size_octx (Γ1 ⋓ Γ2) = (size_octx Γ1 + size_octx Γ2).

Lemma merge_o_ind_fun : ∀ o1 o2 o,
merge_o o1 o2 o → merge_wire o1 o2 = Valid [o].

Lemma merge_ind_fun : ∀ Γ1 Γ2 Γ,
merge_ind Γ1 Γ2 Γ →
Γ == Γ1 ● Γ2.

Lemma merge_o_fun_ind : ∀ o1 o2 o,
merge_wire o1 o2 = Valid [o] →
merge_o o1 o2 o.

Lemma merge_fun_ind : ∀ Γ1 Γ2 Γ,
Γ == Γ1 ● Γ2 →
merge_ind Γ1 Γ2 Γ.
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Lemma merge_intersection : ∀ Γ1 Γ2 Γ3 Γ4,
is_valid (Γ1 ⋓ Γ2) → (Γ1 ⋓ Γ2) = (Γ3 ⋓ Γ4) →
{ Γ13 : OCtx & { Γ14 : OCtx & { Γ23 : OCtx & { Γ24 : OCtx &
Γ1 == Γ13 ● Γ14 ∧ Γ2 == Γ23 ● Γ24 ∧ Γ3 == Γ13 ● Γ23 ∧ Γ4 == Γ14 ● Γ24
} } } }.

Lemma disjoint_nil_r : ∀ Γ, Disjoint Γ ∅.

Lemma disjoint_valid : ∀ Γ1 Γ2,
Disjoint Γ1 Γ2 → is_valid Γ1 → is_valid Γ2 →
is_valid (Γ1 ⋓ Γ2).

Lemma disjoint_merge : ∀ Γ Γ1 Γ2,
Disjoint Γ Γ1 → Disjoint Γ Γ2 → Disjoint Γ (Γ1 ⋓ Γ2).

Lemma disjoint_split : ∀ Γ1 Γ2 Γ,
is_valid Γ1 → is_valid Γ2 →
Disjoint Γ1 Γ2 → Disjoint (Γ1 ⋓ Γ2) Γ →
Disjoint Γ1 Γ ∧ Disjoint Γ2 Γ.

Lemma index_invalid : ∀ i, index Invalid i = None.

Lemma index_empty : ∀ i, index ∅ i = None.

Lemma singleton_index : ∀ x w Γ, SingletonCtx x w Γ →
index Γ x = Some w.

Lemma empty_ctx_size : ∀ Γ, empty_ctx Γ → size_ctx Γ = 0.

Lemma eq_dec_empty_ctx : ∀ Γ, {empty_ctx Γ} + {¬empty_ctx Γ}.

Lemma merge_empty : ∀ (Γ Γ1 Γ2 : Ctx),
Γ == Γ1 ● Γ2 → empty_ctx Γ →
empty_ctx Γ1 ∧ empty_ctx Γ2.

Lemma trim_otrim : ∀ (Γ : Ctx), Valid (trim Γ) = otrim Γ.

Lemma size_ctx_trim : ∀ Γ, size_ctx (trim Γ) = size_ctx Γ.

Lemma size_octx_trim : ∀ Γ, size_octx (trim Γ) = size_octx Γ.

Lemma index_trim : ∀ Γ i,
index (trim Γ) i = index Γ i.

Lemma trim_empty : ∀ Γ, empty_ctx Γ → trim Γ = [].

168



Lemma trim_non_empty : ∀ Γ, ¬ empty_ctx Γ → trim Γ ≠ [].

Lemma trim_cons_non_empty : ∀ o Γ, ¬ empty_ctx Γ →
trim (o :: Γ) = o :: trim Γ.

Lemma trim_valid : ∀ (Γ : OCtx), is_valid Γ ↔ is_valid (otrim Γ).

Lemma trim_merge_dist : ∀ Γ1 Γ2, otrim Γ1 ⋓ otrim Γ2 = otrim (Γ1 ⋓ Γ2).

Lemma trim_merge : ∀ Γ Γ1 Γ2, Γ == Γ1 ● Γ2 →
otrim Γ == otrim Γ1 ● otrim Γ2.

Lemma merge_dec Γ1 Γ2 : is_valid (Γ1 ⋓ Γ2) + {Γ1 ⋓ Γ2 = Invalid}.

Lemma pat_ctx_valid : ∀ Γ W (p : Pat W), Γ ⊢ p :Pat → is_valid Γ.

Lemma octx_wtype_size : ∀ w (p : Pat w) (Γ : OCtx),
Γ ⊢ p:Pat → size_wtype w = size_octx Γ.

Lemma ctx_wtype_size : ∀ w (p : Pat w) (Γ : Ctx),
Γ ⊢ p:Pat → size_wtype w = size_ctx Γ.

Lemma size_wtype_length : ∀ {w} (p : Pat w),
length (pat_to_list p) = size_wtype w.

Lemma typed_pat_merge_valid : ∀ W Γ Γ' (p : Pat W),
(p, Γ') = mk_typed_pat W Γ → is_valid (Γ ⋓ Γ').

Lemma typed_bit_typed : ∀ Γ p Γ', (p, Γ') = mk_typed_bit Γ →
Γ' ⊢ p:Pat.

Lemma typed_qubit_typed : ∀ Γ p Γ', (p, Γ') = mk_typed_qubit Γ →
Γ' ⊢ p:Pat.

Lemma typed_pat_typed : ∀ W Γ (p : Pat W) Γ',
(p, Γ') = mk_typed_pat W Γ →
Γ' ⊢ p:Pat.
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C.7 HOASCircuits.v

Lemma compose_typing : ∀ Γ1 Γ1' Γ W W' (c : Circuit W)
(f : Pat W → Circuit W'),
Γ1 ⊢ c :Circ →
Γ ⊢ f :Fun →
∀ {pf : Γ1' == Γ1 ● Γ},
Γ1' ⊢ compose c f :Circ.

Lemma unbox_typing : ∀ Γ W1 W2 (p : Pat W1) (c : Box W1 W2),
Γ ⊢ p :Pat →
Typed_Box c →
Γ ⊢ unbox c p :Circ.

C.8 DBCircuits.v

Lemma get_fresh_split : ∀ w Γ,
get_fresh w Γ = (get_fresh_pat w Γ, get_fresh_state w Γ).

Lemma get_fresh_merge_valid : ∀ w Γ Γ0 (p : Pat w),
(p, Γ) = get_fresh w Γ0 → is_valid (Γ0 ⋓ Γ).

Lemma get_fresh_typed : ∀ w Γ0 p Γ,
(p, Γ) = get_fresh w Γ0 → Γ ⊢ p:Pat.

Lemma add_fresh_split : ∀ w Γ,
add_fresh w Γ = (add_fresh_pat w Γ, add_fresh_state w Γ).

Lemma add_fresh_state_merge : ∀ w (Γ Γ' : Ctx),
Γ' = add_fresh_state w Γ →
Valid Γ' = Γ ⋓ get_fresh_state w Γ.

Lemma add_fresh_pat_eq : ∀ w Γ, add_fresh_pat w Γ = get_fresh_pat w Γ.

Lemma add_fresh_typed : ∀ w w0 (p : Pat w) (p0 : Pat w0) Γ Γ0,
(p, Γ) = add_fresh w Γ0 →
Γ0 ⊢ p0:Pat →
Γ ⊢ (pair p0 p):Pat.

Lemma add_fresh_typed_empty : ∀ w (p : Pat w) Γ,
(p, Γ) = add_fresh w [] → Γ ⊢ p:Pat.

Lemma maps_to_singleton : ∀ v W, maps_to v (singleton v W) = Some O.
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Lemma SingletonCtx_dom : ∀ x w Γ,
SingletonCtx x w Γ →
ctx_dom Γ = [x].

Lemma SingletonCtx_flatten : ∀ x w Γ,
SingletonCtx x w Γ →
flatten_ctx Γ = [Some w].

Lemma remove_indices_empty : ∀ Γ, remove_indices Γ [] = Γ.

Lemma remove_indices_merge : ∀ (Γ Γ1 Γ2 : Ctx) idxs,
Γ == Γ1 ● Γ2 →
remove_indices Γ idxs == remove_indices Γ1 idxs ● remove_indices Γ2 idxs.

Lemma map_unmap : ∀ l, map pred (map S l) = l.

Lemma remove_flatten : ∀ Γ,
remove_indices Γ (get_nones Γ) = flatten_ctx Γ.

Lemma fmap_S_seq : ∀ len start,
fmap S (seq start len) = seq (S start) len.

Lemma seq_S : ∀ len start,
seq start (S len) = seq start len ++ [start + len].

C.9 Denotation.v

Lemma WF_Matrix_U : ∀ {W} (U : Unitary W),
WF_Matrix (2^JWK) (2^JWK) (JUK).
Lemma unitary_gate_unitary : ∀ {W} (U : Unitary W), WF_Unitary (JUK).
Lemma denote_unitary_transpose : ∀ {W} (U : Unitary W), Jtrans UK = JUK†.

Lemma pow_gt_0 : ∀ n, (2^n > O).

Lemma WF_denote_gate : ∀ safe n W1 W2 (g : Gate W1 W2) ρ,
WF_Matrix (2^JW1K * 2^n) (2^JW1K * 2^n) ρ →
WF_Matrix (2^JW2K * 2^n) (2^JW2K * 2^n) (denote_gate' safe n g ρ).

Lemma discard_qubit_correct : ∀ (ρ : Matrix 2 2), Mixed_State ρ →
Mixed_State (⟨0∣ × ρ × ∣0⟩ .+ ⟨1∣ × ρ × ∣1⟩).
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Lemma denote_gate_correct : ∀ {W1} {W2} (g : Gate W1 W2),
WF_Superoperator (denote_gate true g).

Lemma swap_list_swap : swap_list 2 [S O] = swap.

Lemma WF_pad : ∀ m n (A : Square m),
(m ≤ n) →
WF_Matrix (2^m) (2^m) A →
WF_Matrix (2^n) (2^n) (@pad m n A).

Lemma pad_nothing : ∀ m A, @pad m m A = A.

Lemma WF_swap_to_0_aux : ∀ n i,
(i + 1 < n) →
WF_Matrix (2^n) (2^n) (swap_to_0_aux n i).

Lemma WF_swap_to_0 : ∀ i n, (i < n) →
WF_Matrix (2^n) (2^n) (swap_to_0 n i).

Lemma WF_swap_two_aux : ∀ n i j, (i < j < n) →
WF_Matrix (2^n) (2^n) (swap_two_aux n i j).

Lemma WF_swap_two : ∀ n i j, (i < n) → (j < n) →
WF_Matrix (2^n) (2^n) (swap_two n i j).

Lemma WF_swap_list_aux : ∀ m n l,
(∀ i j, In (i,j) l → (i < n) ∧ (j < n)) →
(m ≤ n) →
WF_Matrix (2^n) (2^n) (swap_list_aux m n l).

Lemma WF_swap_list : ∀ n l, (length l ≤ n) →
(∀ x, In x l → x < n) →
WF_Matrix (2^n) (2^n) (swap_list n l).

Lemma swap_to_0_aux_unitary : ∀ n i, (i + 1 < n) →
WF_Unitary (swap_to_0_aux n i).

Lemma swap_to_0_unitary : ∀ i n, (i < n) → WF_Unitary (swap_to_0 n i).

Lemma swap_two_aux_unitary : ∀ n i j, (i < j < n) →
WF_Unitary (swap_two_aux n i j).

Lemma swap_two_unitary : ∀ n i j, (i < n) → (j < n) →
WF_Unitary (swap_two n i j).
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Lemma swap_list_aux_unitary : ∀ m n l,
(∀ i j, In (i,j) l → (i < n) ∧ (j < n)) →
(m ≤ n) →
WF_Unitary (swap_list_aux m n l).

Lemma swap_list_unitary : ∀ n l, (length l ≤ n) →
(∀ x, In x l → x < n) →
WF_Unitary (swap_list n l).

Lemma ctrl_list_to_unitary_r_false : ∀ n (u : Matrix 2 2),
ctrl_list_to_unitary_r (repeat false n) u = u ⊗ 'I_ (2^n).

Lemma ctrl_list_to_unitary_false : ∀ m n (u : Matrix 2 2),
WF_Matrix 2 2 u →
ctrl_list_to_unitary (repeat false m) (repeat false n) u =
'I_ (2^m) ⊗ u ⊗ 'I_ (2^n).

Lemma ctrls_to_list_empty : ∀ W lb u,
@ctrls_to_list W lb [] u = (O, [], Zero 2 2).

Lemma denote_ctrls_empty : ∀ W (n : N) (u : Unitary W),
denote_ctrls n u [] = Zero (2^n) (2^n).

Lemma denote_ctrls_ctrl_u : ∀ (u : Unitary Qubit),
denote_ctrls 2 (ctrl u) [0;1] = (control (denote u)).

Lemma denote_ctrls_ctrl_u' : ∀ (u : Unitary Qubit),
denote_ctrls 2 (ctrl u) [1;0] = swap × (control (denote u)) × swap.

Lemma denote_ctrls_qubit : ∀ n (u : Unitary Qubit) k,
(k < n) →
denote_ctrls n u [k] = 'I_ (2^k) ⊗ JuK ⊗ 'I_ (2^(n-k-1)).

Lemma ctrl_list_to_unitary_r_unitary : ∀ r (u : Square 2), WF_Unitary u →
WF_Unitary (ctrl_list_to_unitary_r r u).

Lemma ctrl_list_to_unitary_unitary : ∀ l r (u : Square 2), WF_Unitary u →
WF_Unitary (ctrl_list_to_unitary l r u).

Lemma ctrls_to_list_spec : ∀ W l (g : Unitary W) k lb lb' u,
(length l = JWK) →
ctrls_to_list lb l g = (k, lb', u) →
@WF_Unitary 2 u ∧ length lb' = length lb ∧ In k l.
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Lemma denote_ctrls_unitary : ∀ W n (g : Unitary W) l,
(forallb (fun x ⇒ x <? n) l = true) →
(length l = JWK) →
WF_Unitary (denote_ctrls n g l).

Lemma denote_ctrls_transpose_qubit : ∀ (n : N) (u : Unitary Qubit)
(li : list N), denote_ctrls n (trans u) li = (denote_ctrls n u li)†.

Lemma ctrls_to_list_transpose : ∀ W lb li (u : Unitary W) n lb' u',
ctrls_to_list lb li u = (n, lb', u') →
ctrls_to_list lb li (trans u) = (n, lb', u'†).

Lemma ctrl_list_to_unitary_transpose : ∀ l r u,
ctrl_list_to_unitary l r (u†) = (ctrl_list_to_unitary l r u)†.

Lemma denote_ctrls_transpose: ∀ W (n : N) (u : Unitary W) li,
denote_ctrls n (trans u) li = (denote_ctrls n u li) †.

Lemma apply_to_first_correct : ∀ k n (u : Square 2),
WF_Unitary u →
(k < n) →
WF_Superoperator (apply_to_first (@apply_qubit_unitary n u) [k]).

Lemma apply_U_correct : ∀ W n (U : Unitary W) l,
length l = JWK →
(forallb (fun x ⇒ x <? n) l = true) →
WF_Superoperator (apply_U n U l).

Lemma discard_superoperator : ∀ (n i j : N) (ρ : Square (2 ^ n)),
(i * j * 2 = 2^n) →
Mixed_State ρ →
Mixed_State (('I_i ⊗ ⟨0∣ ⊗ 'I_j) × ρ × ('I_i ⊗ ∣0⟩ ⊗ 'I_j) .+

('I_i ⊗ ⟨1∣ ⊗ 'I_j) × ρ × ('I_i ⊗ ∣1⟩ ⊗ 'I_j)).

Lemma measure_superoperator : ∀ (n i j : N) (ρ : Square (2 ^ n)),
(i * j * 2 = 2^n) →
Mixed_State ρ →
Mixed_State (('I_i ⊗ ∣0⟩⟨0∣ ⊗ 'I_j) × ρ × ('I_i ⊗ ∣0⟩⟨0∣ ⊗ 'I_j) .+

('I_i ⊗ ∣1⟩⟨1∣ ⊗ 'I_j) × ρ × ('I_i ⊗ ∣1⟩⟨1∣ ⊗ 'I_j)).

Lemma init0_superoperator : ∀ (n i j : N) (ρ : Square (2 ^ n)),
(i * j = 2^n) →
Mixed_State ρ →
Mixed_State (('I_i ⊗ ∣0⟩ ⊗ 'I_j) × ρ × ('I_i ⊗ ⟨0∣ ⊗ 'I_j)).
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Lemma init1_superoperator : ∀ (n i j : N) (ρ : Square (2 ^ n)),
(i * j = 2^n) →
Mixed_State ρ →
Mixed_State (('I_i ⊗ ∣1⟩ ⊗ 'I_j) × ρ × ('I_i ⊗ ⟨1∣ ⊗ 'I_j)).

Lemma init0_end_superoperator : ∀ (n i : N) (ρ : Square (2 ^ n)),
(i = 2^n) →
Mixed_State ρ →
Mixed_State (('I_i ⊗ ∣0⟩) × ρ × ('I_i ⊗ ⟨0∣)).

Lemma init1_end_superoperator : ∀ (n i : N) (ρ : Square (2 ^ n)),
(i = 2^n) →
Mixed_State ρ →
Mixed_State (('I_i ⊗ ∣1⟩) × ρ × ('I_i ⊗ ⟨1∣)).

Lemma apply_discard_correct : ∀ n k, (k < n) →
WF_Superoperator (@apply_discard n k).

Fact apply_meas_correct : ∀ n k, (k < n) →
WF_Superoperator (@apply_meas n k).

Lemma apply_new0_correct : ∀ n, WF_Superoperator (@apply_new0 n).

Lemma apply_new1_correct : ∀ n, WF_Superoperator (@apply_new1 n).

Lemma apply_gate_correct : ∀ W1 W2 n (g : Gate W1 W2) l,
length l = JW1K →
length l ≤ n →
forallb (fun x ⇒ x <? n) l = true →
WF_Superoperator (@apply_gate n W1 W2 true g l).

Lemma map_same_id : ∀ a l,
map (fun z : N * N ⇒ if a =? snd z then (fst z, a) else z) (combine l l)
= combine l l.

Lemma swap_list_aux_id : ∀ m n l,
swap_list_aux m n (combine l l) = Id (2 ^ n).

Lemma swap_list_n_id : ∀ n, swap_list n (seq 0 n) = Id (2^n).

Lemma apply_U_σ : ∀ m n (U : Square (2^m)),
WF_Matrix (2^m) (2^m) U →
(m ≤ n) →
@apply_U m n U (σ_{n}) = super (pad n U).
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Lemma apply_U_spec_1 : ∀ n i j (A1 : Square (2^i)) (A2 : Square (2^j))
(U : Square (2^1)) (ρ : Square (2^1)), (i + j + 1 = n) →
@apply_U 1 n U [i] (A1 ⊗ ρ ⊗ A2) = A1 ⊗ (super U ρ) ⊗ A2.

Lemma apply_U_spec_2 : ∀ n i j k
(A1 : Square (2^i)) (A2 : Square (2^j)) (A3 : Square (2^k))
(U : Square (2^2)) (ρ1 ρ2 ρ1' ρ2': Square (2^1)), (i + j + k + 2 = n) →
(super U (ρ1 ⊗ ρ2)) = ρ1' ⊗ ρ2' →
@apply_U 2 n U [i; (i+j+1)] (A1 ⊗ ρ1 ⊗ A2 ⊗ ρ2 ⊗ A3) =
A1 ⊗ ρ1' ⊗ A2 ⊗ ρ2' ⊗ A3.

Lemma denote_output : ∀ Γ0 Γ {w} (p : Pat w),
⟨ Γ0 | Γ � output p ⟩
= super (pad (JΓ0K + JΓK) (denote_pat (subst_pat Γ p))).

Lemma length_fresh_state : ∀ w Γ Γ',
Γ' = add_fresh_state w Γ →
length Γ' = (length Γ + size_wtype w).

Lemma swap_fresh_seq : ∀ w (Γ : Ctx),
pat_to_list (add_fresh_pat w Γ) = seq (length Γ) (size_wtype w).

Lemma denote_pat_fresh_id : ∀ w,
denote_pat (add_fresh_pat w []) = Id (2^JwK).
Lemma maps_to_app : ∀ Γ w,
maps_to (length Γ) (Γ ++ [Some w]) = Some (size_ctx Γ).

Lemma no_gaps_size : ∀ Γ, no_gaps Γ → size_ctx Γ = length Γ.

Lemma size_ctx_le_length : ∀ Γ, (size_ctx Γ ≤ length Γ).

Lemma size_eq_no_gaps : ∀ Γ, size_ctx Γ = length Γ → no_gaps Γ.

Lemma no_gaps_app : ∀ Γ Γ', no_gaps Γ → no_gaps Γ' → no_gaps (Γ ++ Γ').

Lemma add_fresh_state_no_gaps : ∀ W Γ,
no_gaps Γ → no_gaps (add_fresh_state W Γ).

Lemma bounded_pat_le : ∀ W (p : Pat W) n n',
(n ≤ n') → Bounded_Pat n p → Bounded_Pat n' p.

Lemma add_fresh_pat_bounded : ∀ W Γ,
no_gaps Γ →
Bounded_Pat (length Γ + size_wtype W) (add_fresh_pat W Γ).
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Lemma subst_var_no_gaps : ∀ Γ w,
no_gaps Γ →
subst_var (Γ ++ [Some w]) (length Γ) = length Γ.

Lemma maps_to_no_gaps : ∀ v Γ,
(v < length Γ) →
no_gaps Γ →
maps_to v Γ = Some v.

Lemma subst_var_no_gaps : ∀ Γ v,
(v < length Γ) →
no_gaps Γ →
subst_var Γ v = v.

Lemma subst_pat_no_gaps : ∀ w (Γ : Ctx) (p : Pat w),
Bounded_Pat (length Γ) p →
no_gaps Γ →
subst_pat Γ p = p.

Lemma subst_units : ∀ w (p : Pat w) Γ, ∅ ⊢ p:Pat → subst_pat Γ p = p.

Lemma subst_pat_fresh : ∀ w Γ,
no_gaps Γ →
subst_pat (add_fresh_state w Γ) (add_fresh_pat w Γ)
= add_fresh_pat w Γ.

Lemma subst_pat_fresh_empty : ∀ w,
subst_pat (add_fresh_state w []) (add_fresh_pat w [])
= add_fresh_pat w [].

Lemma size_fresh_ctx : ∀ (w : WType) (Γ : Ctx),
size_ctx (add_fresh_state w Γ) = (size_ctx Γ + size_wtype w).

Lemma denote_db_unbox : ∀ {w1 w2} (b : Box w1 w2),JbK = ⟨ [] | add_fresh_state w1 [] � unbox b (add_fresh_pat w1 []) ⟩.

Lemma denote_index_update_some : ∀ (Γ : Ctx) x w w',
index (Valid Γ) x = Some w →Jupdate_at Γ x (Some w')K = JΓK.
Lemma denote_index_update_none : ∀ (Γ : Ctx) x w,
index (Valid Γ) x = Some w →Jupdate_at Γ x NoneK = (JΓK - 1).
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Lemma singleton_update : ∀ Γ W W' v,
SingletonCtx v W Γ →
SingletonCtx v W' (update_at Γ v (Some W')).

Lemma remove_at_singleton : ∀ x w Γ,
SingletonCtx x w Γ →
empty_ctx (remove_at x Γ).

Lemma update_none_singleton : ∀ x w Γ,
SingletonCtx x w Γ →
empty_ctx (update_at Γ x None).

Lemma remove_pat_singleton : ∀ x W (p : Pat W),
singleton x W ⊢ p:Pat →
remove_pat p (singleton x W) = [].

Lemma index_merge_l : ∀ Γ Γ1 Γ2 n w,
Γ == Γ1 ● Γ2 →
index Γ1 n = Some w →
index Γ n = Some w.

Lemma index_merge_r : ∀ Γ Γ1 Γ2 n w,
Γ == Γ1 ● Γ2 →
index Γ2 n = Some w →
index Γ n = Some w.

Lemma remove_at_merge : ∀ (Γ Γ1 Γ2 : Ctx) n, Γ == Γ1 ● Γ2 →
Valid (remove_at n Γ) == Valid (remove_at n Γ1) ● Valid (remove_at n Γ2).

Lemma update_none_merge : ∀ (Γ Γ1 Γ2 : Ctx) n, Γ == Γ1 ● Γ2 →
Valid (update_at Γ n None) ==
Valid (update_at Γ1 n None) ● Valid (update_at Γ2 n None).

Lemma remove_at_collision : ∀ n W (Γ Γ1 Γ2 : Ctx),
SingletonCtx n W Γ1 →
Γ == Γ1 ● Γ2 → size_ctx (remove_at n Γ2) = size_ctx Γ2.

Lemma update_none_collision : ∀ n W (Γ Γ1 Γ2 : Ctx),
SingletonCtx n W Γ1 →
Γ == Γ1 ● Γ2 → size_ctx (update_at Γ2 n None) = size_ctx Γ2.

Fact process_gate_ctx_size : ∀ w1 w2 (Γ Γ1 Γ2 : Ctx) (g : Gate w1 w2)
(p1 : Pat w1),
Γ == Γ1 ● Γ2 → Γ1 ⊢ p1 :Pat →
(size_ctx (process_gate_state g p1 Γ)) = (size_ctx Γ + Jw2K - Jw1K).
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Lemma denote_gate_circuit : ∀ {w1 w2 w'} (safe:B) (g : Gate w1 w2)
(p1 : Pat w1) (f : Pat w2 → Circuit w') (Γ0 Γ Γ1 Γ2 : Ctx),
Γ == Γ1 ● Γ2 → Γ1 ⊢ p1 :Pat →
denote_circuit safe (gate g p1 f) Γ0 Γ =
compose_super
(denote_circuit safe (f (process_gate_pat g p1 Γ)) Γ0
(process_gate_state g p1 Γ))

(apply_gate safe g (pat_to_list (subst_pat Γ p1))).

Lemma lookup_maybe_S : ∀ x l,
lookup_maybe (S x) (map S l) = lookup_maybe x l.

Lemma subst_qubit_bounded : ∀ v (Γ Γv Γo : Ctx),
Γv ⊢ (qubit v) :Pat →
Γ == Γv ● Γo →
(subst_var Γ v < size_octx Γ).

Lemma subst_bit_bounded : ∀ v (Γ Γv Γo : Ctx),
Γv ⊢ (bit v) :Pat →
Γ == Γv ● Γo →
(subst_var Γ v < size_octx Γ).

Lemma pat_to_list_bounded : ∀ W (Γ Γp Γo : Ctx) (p : Pat W) x,
Γ == Γp ● Γo →
Γp ⊢ p:Pat →
In x (pat_to_list (subst_pat Γ p)) →
(x < size_ctx Γ).

Lemma update_at_singleton : ∀ v W W' Γ Γ',
SingletonCtx v W Γ →
SingletonCtx v W' Γ' →
update_at Γ v (Some W') = Γ'.

Lemma update_at_merge : ∀ v W W' Γ Γ1 Γ1' Γ2,
SingletonCtx v W Γ1 →
SingletonCtx v W' Γ1' →
Valid Γ == Γ1 ● Γ2 →
Valid (update_at Γ v (Some W')) == Γ1' ● Γ2.

Lemma types_pat_no_trail : ∀ Γ W (p : Pat W),
Valid Γ ⊢ p:Pat → trim Γ = Γ.

Lemma remove_bit_merge' : ∀ (Γ Γ' : Ctx) v,
Γ' == singleton v Bit ● Γ → remove_pat (bit v) Γ' = trim Γ.
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Lemma remove_bit_merge : ∀ (Γ Γ' : Ctx) W (p : Pat W) v,
Γ ⊢ p:Pat →
Γ' == singleton v Bit ● Γ →
remove_pat (bit v) Γ' = Γ.

Lemma remove_qubit_merge' : ∀ (Γ Γ' : Ctx) v,
Γ' == singleton v Qubit ● Γ →
remove_pat (qubit v) Γ' = trim Γ.

Lemma remove_qubit_merge : ∀ (Γ Γ' : Ctx) W (p : Pat W) v,
Γ ⊢ p:Pat →
Γ' == singleton v Qubit ● Γ →
remove_pat (qubit v) Γ' = Γ.

Lemma remove_bit_pred : ∀ (Γ Γ' : Ctx) v,
Γ' == (singleton v Bit) ● Γ →
size_ctx (remove_pat (bit v) Γ') = (size_ctx Γ' - 1).

Lemma remove_qubit_pred : ∀ (Γ Γ' : Ctx) v,
Γ' == (singleton v Qubit) ● Γ →
size_ctx (remove_pat (qubit v) Γ') = (size_ctx Γ' - 1).

Lemma maps_to_trim : ∀ Γ v, maps_to v (trim Γ) = maps_to v Γ.

Lemma subst_pat_trim : ∀ W Γ (p : Pat W),
subst_pat (trim Γ) p = subst_pat Γ p.

Lemma trim_types_circ : ∀ W (c : Circuit W) (Γ : Ctx), Γ ⊢ c :Circ →
trim Γ ⊢ c :Circ.

Theorem denote_static_circuit_correct : ∀ W (Γ0 Γ : Ctx) (c : Circuit W),
Static_Circuit c →
Γ ⊢ c:Circ →
WF_Superoperator (⟨ Γ0 | Γ � c⟩).

Theorem denote_static_box_correct : ∀ W1 W2 (c : Box W1 W2),
Static_Box c →
Typed_Box c →
WF_Superoperator (JcK).
Lemma inSeq_id_l : ∀ w1 w2 (c : Box w1 w2), id_circ ⋅ c = c.

Lemma inSeq_id_r : ∀ w1 w2 (c : Box w1 w2), c ⋅ id_circ = c.
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Lemma HOAS_Equiv_refl : ∀ w1 w2 (c : Box w1 w2), c ≡ c.

Lemma HOAS_Equiv_sym : ∀ w1 w2 (c1 c2: Box w1 w2), (c1 ≡ c2) → c2 ≡ c1.

Lemma HOAS_Equiv_trans : ∀ w1 w2 (c1 c2 c3 : Box w1 w2),
(c1 ≡ c2) → (c2 ≡ c3) → c1 ≡ c3.

Lemma inSeq_assoc : ∀ {w1 w2 w3 w4} (c1 : Box w1 w2) (c2 : Box w2 w3)
(c3 : Box w3 w4), c3 ⋅ (c2 ⋅ c1) = (c3 ⋅ c2) ⋅ c1.

C.10 HOASLib.v

Lemma boxed_gate_WT {W1 W2} (g : Gate W1 W2) : Typed_Box (boxed_gate g).

Lemma types_circuit_valid : ∀ w (c : Circuit w) Γ, Γ ⊢ c :Circ → is_valid
Γ.

Lemma apply_box_WT : ∀ w1 w2 (b : Box w1 w2) (c : Circuit w1) Γ,
Typed_Box b → Γ ⊢ c :Circ → Γ ⊢ apply_box b c :Circ.

Lemma id_circ_WT : ∀ W, Typed_Box (@id_circ W).

Lemma WT_SWAP : Typed_Box SWAP.

Lemma new_WT : ∀ b, Typed_Box (new b).

Lemma init_WT : ∀ b, Typed_Box (init b).

Lemma assert_WT : ∀ b, Typed_Box (assert b).

Lemma inSeq_WT : ∀ W1 W2 W2 (c1 : Box W1 W2) (c2 : Box W2 W2),
Typed_Box c1 → Typed_Box c2 → Typed_Box (inSeq c1 c2).

Lemma inPar_WT : ∀ W1 W1' W2 W2' (c1 : Box W1 W2) (c2 : Box W1' W2'),
Typed_Box c1 → Typed_Box c2 →
Typed_Box (inPar c1 c2).

Lemma types_units : ∀ n, Types_Pat ∅ (units n).

Lemma initMany_WT : ∀ b n, Typed_Box (initMany b n).

Lemma inSeqMany_WT : ∀ n W (c : Box W W),
Typed_Box c → Typed_Box (inSeqMany n c).
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Lemma inParMany_WT : ∀ n W W' (c : Box W W'), Typed_Box c →
Typed_Box (inParMany n c).

Lemma CL_AND_WT : Typed_Box CL_AND.

Lemma CL_XOR_WT : Typed_Box CL_XOR.

Lemma CL_OR_WT : Typed_Box CL_OR.

Lemma TRUE_WT : Typed_Box TRUE.

Lemma FALSE_WT : Typed_Box FALSE.

Lemma NOT_WT : Typed_Box NOT.

Lemma AND_WT : Typed_Box AND.

Lemma XOR_WT : Typed_Box XOR.

C.11 SemanticLib.v

Lemma id_circ_spec : ∀ W ρ safe,
WF_Matrix (2^JWK) (2^JWK) ρ →
denote_box safe (@id_circ W) ρ = ρ.

Lemma X_spec : ∀ (b safe : B),
denote_box safe (boxed_gate _X) (bool_to_matrix b) =
bool_to_matrix (¬b).

Lemma init0_spec : ∀ safe, denote_box safe init0 (Id (2^0)) = ∣0⟩⟨0∣.

Lemma init1_spec : ∀ safe, denote_box safe init1 (Id (2^0)) = ∣1⟩⟨1∣.

Lemma assert0_spec : ∀ safe, denote_box safe assert0 ∣0⟩⟨0∣ = Id 1.

Lemma assert1_spec : ∀ safe, denote_box safe assert1 ∣1⟩⟨1∣ = Id 1.

Lemma init_spec : ∀ b safe,
denote_box safe (init b) (Id (2^0)) = bool_to_matrix b.

Lemma assert_spec : ∀ b safe,
denote_box safe (assert b) (bool_to_matrix b) = Id 1.
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Lemma CNOT_spec : ∀ (b1 b2 safe : B),
denote_box safe CNOT (bool_to_matrix b1 ⊗ bool_to_matrix b2) =
bool_to_matrix b1 ⊗ bool_to_matrix (b1 ⊕ b2).

Lemma TRUE_spec : ∀ z safe,
denote_box safe TRUE (bool_to_matrix z) = bool_to_matrix (true ⊕ z).

Lemma FALSE_spec : ∀ z safe,
denote_box safe FALSE (bool_to_matrix z) = bool_to_matrix (false ⊕ z).

Lemma NOT_spec : ∀ (x z : B),
∀ safe, denote_box safe NOT (bool_to_matrix x ⊗ bool_to_matrix z) =
bool_to_matrix x ⊗ bool_to_matrix ((¬ x) ⊕ z).

Lemma XOR_spec : ∀ (x y z safe : B),
denote_box safe XOR
(bool_to_matrix x ⊗ bool_to_matrix y ⊗ bool_to_matrix z) =

bool_to_matrix x ⊗ bool_to_matrix y ⊗ bool_to_matrix (x ⊕ y ⊕ z).

Lemma AND_spec : ∀ (x y z safe : B),
denote_box safe AND
(bool_to_matrix x ⊗ bool_to_matrix y ⊗ bool_to_matrix z) =

bool_to_matrix x ⊗ bool_to_matrix y ⊗ bool_to_matrix ((x && y) ⊕ z).

C.12 HOASExamples.v

Lemma new_discard_WT : Typed_Box new_discard.

Lemma init_discard_WT : Typed_Box init_discard.

Lemma hadamard_measure_WT : Typed_Box hadamard_measure.

Lemma U_deutsch_WT : ∀ Uf, Typed_Box (U_deutsch Uf).

Lemma lift_deutsch_WT : ∀ Uf, Typed_Box Uf → Typed_Box (lift_deutsch Uf).

Lemma deutsch_WF : ∀ Uf, Typed_Box Uf → Typed_Box (deutsch Uf).

Lemma deutsch_basic_eq : ∀ Uf, deutsch_basic Uf = deutsch Uf.

Lemma Deutsch_Jozsa_WT : ∀ n Uf, Typed_Box Uf →
Typed_Box (Deutsch_Jozsa n Uf).
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Lemma Deutsch_Jozsa_WT' : ∀ n Uf, Typed_Box Uf →
Typed_Box (Deutsch_Jozsa n Uf).

Lemma bell00_WT : Typed_Box bell00.

Lemma bell_old_style_WT : Typed_Box bell_old_style.

Lemma bell_one_line_WT : Typed_Box bell_one_line.

Lemma alice_WT : Typed_Box alice.

Lemma bob_WT : Typed_Box bob.

Lemma teleport_WT : Typed_Box teleport.

Lemma bob_lift_WT : Typed_Box bob_lift.

Lemma bob_lift_WT' : Typed_Box bob_lift'.

Lemma teleport_lift_WT : Typed_Box teleport_lift.

Lemma bob_distant_WT : ∀ b1 b2, Typed_Box (bob_distant b1 b2).

Lemma teleport_distant_WT : Typed_Box teleport_distant.

Lemma superdense_WT : Typed_Box superdense.

Lemma superdense_distant_WT : ∀ b1 b2,
Typed_Box (superdense_distant b1 b2).

Lemma rotations_WT : ∀ n m, Typed_Box (rotations n m).

Lemma qft_WT : ∀ n, Typed_Box (qft n).

Lemma coin_flip_WT : Typed_Box coin_flip.

Lemma coin_flips_WT : ∀ n, Typed_Box (coin_flips n).

Lemma coin_flips_lift_WT : ∀ n, Typed_Box (coin_flips_lift n).

Lemma coin_flips_lift_WT : ∀ n, Typed_Box (coin_flips_lift n).

Lemma n_coins_WT : ∀ n, Typed_Box (n_coins n).
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Lemma n_coins_WT' : ∀ n, Typed_Box (n_coins' n).

Lemma unitary_transpose_WT : ∀ W (U : Unitary W),
Typed_Box (unitary_transpose U).

Lemma prepare_basis_WT : ∀ li, Typed_Box (prepare_basis li).

Lemma share_WT : ∀ n, Typed_Box (share n).

Lemma lift_eta_bit_WT : Typed_Box lift_eta.

Lemma lift_meas_WT : Typed_Box lift_meas.

Lemma AND_WT : Typed_Box AND.

Lemma XOR_WT : Typed_Box XOR.

Lemma OR_WT : Typed_Box OR.

C.13 HOASProofs.v

Lemma init_ket1 : Jinit trueK I1 = (∣1⟩⟨1∣ : Density 2).

Lemma unitary_transpose_id_qubit : ∀ (U : Unitary Qubit),
unitary_transpose U ≡ id_circ.

Lemma apply_U_trans : ∀ n W (U : Unitary W) li,
compose_super (apply_U n U li) (apply_U n (trans U) li) = fun x ⇒ x.

Lemma unitary_transpose_id : ∀ W (U : Unitary W),
unitary_transpose U ≡ id_circ.

Lemma bias1 : biased_coin 1 = ∣1⟩⟨1∣.

Lemma even_bias : biased_coin (1/2) = fair_coin.

Lemma fair_toss : Jcoin_flipK I1 = fair_coin.

Lemma wf_biased_coin : ∀ c, WF_Matrix 2 2 (biased_coin c).

Lemma flips_lift_correct_gen : ∀ n a,Jcoin_flips_lift nK (a .* I1) = a .* biased_coin (1/(2^n)).
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Lemma flips_lift_correct : ∀ n,Jcoin_flips_lift nK I1 = biased_coin (1/(2^n)).

Lemma wf_prep : ∀ α β, WF_Matrix 2 2 (prep α β).

Lemma f2_WF : WF_Matrix 4 4 f2.

Lemma U_deutsch_constant : ∀ Uf, U_constant Uf →JU_deutsch UfK I1 = ∣0⟩⟨0∣.

Lemma U_deutsch_balanced : ∀ Uf, U_balanced Uf →JU_deutsch UfK I1 = ∣1⟩⟨1∣.

Lemma deutsch_constant : ∀ f, constant f →
⟦deutsch (fun_to_box f)⟧ I1 = ∣0⟩⟨0∣.

Lemma deutsch_balanced : ∀ f, balanced f →
⟦deutsch (fun_to_box f)⟧ I1 = ∣1⟩⟨1∣.

Lemma bell00_spec : Jbell00K I1 = EPR00.

Lemma alice_spec : ∀ (ρ : Density 4), WF_Matrix 4 4 ρ →JaliceK ρ = M_alice ρ.

Lemma bob_spec : ∀ (ρ : Density 8), WF_Matrix 8 8 ρ →JbobK ρ = M_bob ρ.

Lemma teleport_eq : teleport ≡ id_circ.

Lemma superdense_eq : ∀ (ρ : Density 4),
Classical ρ →
WF_Matrix 4 4 ρ →JsuperdenseK ρ = ρ.

Lemma superdense_distant_eq : ∀ b1 b2,Jsuperdense_distant b1 b2K I1 = bools_to_matrix [b1; b2].

C.14 Equations.v

Lemma X_meas_WT : Typed_Box X_meas.

Lemma meas_NOT_WT : Typed_Box meas_NOT.
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Lemma NOT_meas_comm : X_meas ≡ meas_NOT.

Lemma lift_UV_WT : ∀ W (U V : Unitary W), Typed_Box (lift_UV U V).

Lemma alternate_WT : ∀ W (U V : Unitary W), Typed_Box (alternate U V).

Lemma alt_UV_WT : ∀ W (U V : Unitary W), Typed_Box (alt_UV U V).

Lemma U_meas_discard_WT : ∀ (U : Unitary Qubit),
Typed_Box (U_meas_discard U).

Lemma meas_discard_WT : Typed_Box meas_discard.

Lemma U_meas_eq_meas : ∀ U, U_meas_discard U ≡ meas_discard.

Lemma init_meas_WT : ∀ b, Typed_Box (init_meas b).

Lemma init_alt_WT : ∀ W b (U V : Unitary W), Typed_Box (init_alt b U V).

Lemma init_if_WT : ∀ W b (U V : Unitary W), Typed_Box (init_if b U V).

Lemma init_if_true_qubit : ∀ (U V : Unitary Qubit) ρ, WF_Matrix 2 2 ρ →Jinit_if true U VK ρ = (∣1⟩ ⊗ 'I_2 ) × (JUK × ρ × (JUK†)) × (⟨1∣ ⊗ 'I_2).

Lemma init_if_false_qubit : ∀ (U V : Unitary Qubit) ρ, WF_Matrix 2 2 ρ →Jinit_if false U VK ρ = (∣0⟩ ⊗ 'I_2 ) × (JVK × ρ × (JVK†)) × (⟨0∣ ⊗ 'I_2).

Lemma init_alt_if_qubit : ∀ b (U V : Unitary Qubit),
init_alt b U V ≡ init_if b U V.

Lemma init_X_WT : ∀ b, Typed_Box (init_X b).

Lemma init_X_init : ∀ b, init_X b ≡ init (negb b).

Lemma new_WT : ∀ b, Typed_Box (new b).

Lemma lift_new_WT : Typed_Box lift_new.

Lemma lift_new_new : ∀ (ρ : Density 2),
WF_Matrix 2 2 ρ → Classical ρ → Jlift_newK ρ = J@id_circ BitK ρ.

Lemma meas_lift_new_WT : Typed_Box meas_lift_new.

Lemma meas_lift_new_new : meas_lift_new ≡ boxed_gate meas.
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Lemma super_super : ∀ m n o (U : Matrix o n) (V : Matrix n m)
(ρ : Square m),
super U (super V ρ) = super (U × V) ρ.

Lemma super_eq : ∀ m n (U U' : Matrix m n) (ρ ρ' : Square n),
U = U' → ρ = ρ' →
super U ρ = super U' ρ'.

Lemma HH_CNOT_HH_eq_NOTC : HH_CNOT_HH ≡ NOTC.

Lemma HZH_X : HZH ≡ _X.

C.15 Composition.v

Fact denote_compose : ∀ safe w (c : Circuit w) (Γ : Ctx),
Γ ⊢ c :Circ →
∀ w' (f : Pat w → Circuit w') (Γ0 Γ1 Γ1' Γ01 : Ctx),
Γ1 ⊢ f :Fun →
Γ1' == Γ1 ● Γ →
Γ01 == Γ0 ● Γ1 →
denote_circuit safe (compose c f) Γ0 Γ1' =
compose_super
(denote_circuit safe (f (add_fresh_pat w Γ1)) Γ0 (add_fresh_state w Γ1))
(denote_circuit safe c Γ01 Γ).

Theorem inSeq_correct : ∀ W1 W2 W2 (g : Box W2 W2) (f : Box W1 W2)
(safe : B), Typed_Box g → Typed_Box f →
denote_box safe (inSeq f g) =
compose_super (denote_box safe g) (denote_box safe f).

Fact inPar_correct : ∀ W1 W1' W2 W2' (f : Box W1 W1') (g : Box W2 W2')
(safe : B) (ρ1 : Square (2^JW1K)) (ρ2 : Square (2^JW2K)),
Typed_Box f → Typed_Box g →
WF_Matrix (2^JW1K) (2^JW1K) ρ1 →
WF_Matrix (2^JW2K) (2^JW2K) ρ2 →
denote_box safe (inPar f g) (ρ1 ⊗ ρ2) =
denote_box safe f ρ1 ⊗ denote_box safe g ρ2.

Lemma HOAS_Equiv_inSeq : ∀ w1 w2 w3
(c1 c1' : Box w1 w2) (c2 c2' : Box w2 w3),
Typed_Box c1 → Typed_Box c1' → Typed_Box c2 → Typed_Box c2' →
c1 ≡ c1' → c2 ≡ c2' → (c2 ⋅ c1) ≡ (c2' ⋅ c1').
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C.16 Ancilla.v

Fact valid_ancillae_box_equal : ∀ W1 W2 (c : Box W1 W2),
valid_ancillae_box c ↔ valid_ancillae_box' c.

Fact valid_ancillae_unbox : ∀ W W' (c : Pat W → Circuit W'),
(∀ p, valid_ancillae (c p)) ↔ valid_ancillae_box (box (fun p ⇒ c p)).

Lemma id_correct : ∀ W p, valid_ancillae (@output W p).

Lemma update_merge : ∀ (Γ Γ' :Ctx) W W' v, Γ' == singleton v W ● Γ →
Valid (update_at Γ' v (Some W')) == singleton v W' ● Γ.

Lemma change_type_singleton : ∀ v W W', change_type v W' (singleton v W) =
singleton v W'.

Lemma ancilla_free_valid : ∀ W (c : Circuit W),
ancilla_free c →
valid_ancillae c.

Lemma ancilla_free_box_valid : ∀ W W' (c : Box W W'),
ancilla_free_box c →
valid_ancillae_box c.

Lemma valid_denote_true : ∀ W W' (c : Box W W')
(ρ : Square (2^(JWK))) (ρ' : Square (2^(JWK))) (safe : B),
Typed_Box c →
valid_ancillae_box c →
denote_box true c ρ = ρ' →
denote_box safe c ρ = ρ'.

Lemma valid_denote_false : ∀ W W' (c : Box W W')
(ρ : Square (2^(JWK))) (ρ' : Square (2^(JWK))) (safe : B),
Typed_Box c →
valid_ancillae_box c →
denote_box false c ρ = ρ' →
denote_box safe c ρ = ρ'.

C.17 Symmetric.v

Lemma unitary_at1_WT : ∀ n (U : Unitary Qubit) i (pf : i < n),
Typed_Box (unitary_at1 n U i pf).
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Lemma X_at_WT : ∀ n i pf, Typed_Box (X_at n i pf).

Lemma lt_leS_le : ∀ i j k,
i < j → j ≤ S k → i ≤ k.

Lemma strong_induction' :
∀ P : N → Type,
(∀ n : N, (∀ k : N, (k < n → P k)) → P n) →
∀ n i, i ≤ n → P i.

Theorem strong_induction:
∀ P : N → Type,
(∀ n : N, (∀ k : N, (k < n → P k)) → P n) →
∀ n : N, P n.

Lemma le_hprop : ∀ (a b : N) (pf1 pf2 : a ≤ b), pf1 = pf2.

Lemma lt_hprop : ∀ (a b : N) (pf1 pf2 : a < b), pf1 = pf2.

Lemma False_hprop : ∀ (pf1 pf2 : False), pf1 = pf2.

Lemma N_neq_hprop : ∀ (m n : N) (pf1 pf2 : m ≠ n), pf1 = pf2.

Lemma CNOT_at_i0_WT : ∀ (n j : N) (pf_j : 0 < j) (pf_n : j < n),
Typed_Box (CNOT_at_i0 n j pf_j pf_n).

Lemma CNOT_at_i0_SS : ∀ n j
(pfj : 0 < S (S j)) (pfj' : 0 < S j)
(pfn : S (S j) < S (S n)) (pfn' : S j < S n),
CNOT_at_i0 (S (S n)) (S (S j)) pfj pfn =
box_ q ⇒ let_ (q0,(q1,qs)) ← q;
let_ (q0,qs) ← CNOT_at_i0 (S n) (S j) pfj' pfn' $ (q0,qs);
(q0,(q1,qs)).

Lemma CNOT_at_j0_WT : ∀ (n i : N) (pf_i : 0 < i) (pf_n : i < n),
Typed_Box (CNOT_at_j0 n i pf_i pf_n).

Lemma CNOT_at_j0_SS : ∀ n i
(pfi : 0 < S (S i)) (pfi' : 0 < S i)
(pfn : S (S i) < S (S n)) (pfn' : S i < S n),
CNOT_at_j0 (S (S n)) (S (S i)) pfi pfn =
box_ q ⇒ let_ (q0,(q1,qs)) ← q;
let_ (q0,qs) ← CNOT_at_j0 (S n) (S i) pfi' pfn' $ (q0,qs);
(q0,(q1,qs)).
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Lemma CNOT_at'_WT : ∀ (n i j : N)
(pf_i : i < n) (pf_j : j < n) (pf_i_j : i ≠ j),
Typed_Box (CNOT_at' n i j pf_i pf_j pf_i_j).

Theorem CNOT_at_WT : ∀ n i j, Typed_Box (CNOT_at n i j).

Lemma CNOT_at_0 : ∀ i j, CNOT_at 0 i j = id_circ.

Lemma CNOT_at_1 : ∀ i j, CNOT_at 1 i j = id_circ.

Lemma CNOT_at_n_0_SS : ∀ n' j',
j' < n' →
CNOT_at (S (S n')) 0 (S (S j')) =
box_ q ⇒ let_ (q0,(q1,qs)) ← q;
let_ (q0,qs) ← CNOT_at (S n') 0 (S j') $ (q0,qs);
(q0,(q1,qs)).

Lemma CNOT_at_n_SS_0 : ∀ n' i',
i' < n' →
CNOT_at (S (S n')) (S (S i')) 0 =
box_ q ⇒ let_ (q0,(q1,qs)) ← q;
let_ (q0,qs) ← CNOT_at (S n') (S i') 0 $(q0,qs);
(q0,(q1,qs)).

Lemma CNOT_at_at' : ∀ n i j (pfi : i < n) (pfj : j < n) (pf_i_j : i ≠ j),
CNOT_at n i j = CNOT_at' n i j pfi pfj pf_i_j.

Lemma CNOT_at_n_S_S : ∀ n' i' j',
i' < n' → j' < n' → i' ≠ j' →
CNOT_at (S n') (S i') (S j')
= box_ q ⇒ let_ (q0,qs) ← q;

let_ qs ← CNOT_at n' i' j' $ qs;
(q0,qs).

Lemma TOF_at_ij01_WT : ∀ n k pf_j pf_n,
Typed_Box (TOF_at_ij01 n k pf_j pf_n).

Lemma TOF_at_ik01_WT : ∀ n j pf_j pf_n,
Typed_Box (TOF_at_ik01 n j pf_j pf_n).

Lemma TOF_at_ki01_WT : ∀ n j pf_j pf_n,
Typed_Box (TOF_at_ki01 n j pf_j pf_n).

Lemma TOF_at_i0_WT : ∀ n j k pf_ij pf_ik pf_jk pf_jn pf_kn,
Typed_Box (TOF_at_i0 n j k pf_ij pf_ik pf_jk pf_jn pf_kn).
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Lemma TOF_at_k0_WT : ∀ n i j pf_ij pf_ik pf_jk pf_in pf_jn,
Typed_Box (TOF_at_k0 n i j pf_ij pf_ik pf_jk pf_in pf_jn).

Lemma Toffoli_at'_WT : ∀ n (i j k : Var) (pf_i : i < n) (pf_j : j < n)
(pf_k : k < n) (pf_i_j : i ≠ j) (pf_i_k : i ≠ k) (pf_j_k : j ≠ k),
Typed_Box (Toffoli_at' n i j k pf_i pf_j pf_k pf_i_j pf_i_k pf_j_k).

Lemma Toffoli_at_WT : ∀ n (i j k : Var), Typed_Box (Toffoli_at n i j k).

Lemma strip_one_l_in_WT : ∀ W W' (c : Box (One ⊗ W) W'),
Typed_Box c → Typed_Box (strip_one_l_in c).

Lemma strip_one_l_in_eq : ∀ W W' (c : Box (One ⊗ W) W')
(ρ : Matrix (2^JWK) (2^JW'K)),
denote_box true (strip_one_l_in c) ρ = denote_box true c ρ.

Lemma strip_one_l_out_WT : ∀ W W' (c : Box W (One ⊗ W')),
Typed_Box c → Typed_Box (strip_one_l_out c).

Fact strip_one_l_out_eq : ∀ W W' (c : Box W (One ⊗ W'))
(ρ : Matrix (2^JWK) (2^JW'K)),
denote_box true (strip_one_l_out c) ρ = denote_box true c ρ.

Lemma strip_one_r_in_WT : ∀ W W' (c : Box (W ⊗ One) W'),
Typed_Box c → Typed_Box (strip_one_r_in c).

Lemma strip_one_r_in_eq : ∀ W W' (c : Box (W ⊗ One) W')
(ρ : Matrix (2^JWK) (2^JW'K)),
denote_box true (strip_one_r_in c) ρ = denote_box true c ρ.

Lemma strip_one_r_out_WT : ∀ W W' (c : Box W (W' ⊗ One)),
Typed_Box c → Typed_Box (strip_one_r_out c).

Fact strip_one_r_out_eq : ∀ W W' (c : Box W (W' ⊗ One))
(ρ : Matrix (2^JWK) (2^JW'K)),
denote_box true (strip_one_r_out c) ρ = denote_box true c ρ.

Lemma assert_at_WT : ∀ b n i, Typed_Box (assert_at b n i).

Lemma init_at_WT : ∀ b n i, Typed_Box (init_at b n i).

Lemma in_source_in_scope : ∀ n t i, in_source n t i → in_scope n t i.
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Lemma symmetric_reverse_symmetric : ∀ n t c
(pf_sym : source_symmetric n t c),
source_symmetric n t (symmetric_reverse n t c pf_sym).

Lemma gate_acts_on_WT : ∀ m (g : Box (m ⊗ Qubit) (m ⊗ Qubit)) k,
gate_acts_on k g → Typed_Box g.

Lemma source_symmetric_WT : ∀ n t c, source_symmetric n t c → Typed_Box c.

Fact gate_acts_on_noop_at : ∀ m g k i,
@gate_acts_on (S m) k g →
i ≠ k → i < S m →
noop_on m i g.

Lemma fresh_state_ntensor : ∀ n (Γ : Ctx),
add_fresh_state (n ⊗ Qubit) Γ = Γ ++ List.repeat (Some Qubit) n.

Fact init_at_spec_strong : ∀ b n i (ρ : Square (2^n)) (safe : B),
i ≤ n →
denote_box safe (init_at b n i) ρ =
('I_ (2^i) ⊗ bool_to_ket b ⊗ 'I_ (2^ (n-i))) × ρ ×
('I_ (2^i) ⊗ (bool_to_ket b)† ⊗ 'I_ (2^ (n-i))).

Fact assert_at_spec_safe : ∀ b n i (ρ : Square (2^n)),
i ≤ n →
denote_box true (assert_at b n i) ρ =
('I_(2^i) ⊗ ⟨0∣ ⊗ 'I_(2^(n-i))) × ρ × ('I_(2^i) ⊗ ∣0⟩ ⊗ 'I_(2^ (n-i)))
.+
('I_(2^i) ⊗ ⟨1∣ ⊗ 'I_(2^(n-i))) × ρ × ('I_(2^i) ⊗ ∣1⟩ ⊗ 'I_(2^ (n-i))).

Fact assert_at_spec_unsafe : ∀ b n i (ρ : Square (2^n)),
i ≤ n →
denote_box false (assert_at b n i) ρ =
('I_(2^i) ⊗ (bool_to_ket b)† ⊗ 'I_(2^(n-i))) × ρ ×
('I_(2^i) ⊗ bool_to_ket b ⊗ 'I_(2^ (n-i))).

Lemma assert_init_at_id : ∀ b m i, i < S m →
(assert_at b m i ⋅ init_at b m i ≡ id_circ).

Fact init_assert_at_valid : ∀ b m i W1 (c : Box W1 (S m ⊗ Qubit)),
i < S m →
valid_ancillae_box' (assert_at b m i ⋅ c) →
init_at b m i ⋅ assert_at b m i ⋅ c ≡ c.
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Fact valid_ancillae_box'_equiv : ∀ W1 W2 (b1 b2 : Box W1 W2),
b1 ≡ b2 → valid_ancillae_box' b1 ↔ valid_ancillae_box' b2.

Fact valid_inSeq : ∀ w1 w2 w3 (c1 : Box w1 w2) (c2 : Box w2 w3),
Typed_Box c1 → Typed_Box c2 →
valid_ancillae_box' c1 → valid_ancillae_box' c2 →
valid_ancillae_box' (c2 ⋅ c1).

Lemma noop_source_inSeq : ∀ n t c1 c2,
Typed_Box c1 → Typed_Box c2 →
noop_source n t c1 →
noop_source n t c2 →
noop_source n t (c2 ⋅ c1).

Lemma denote_box_id_circ : ∀ b w ρ, WF_Matrix _ _ ρ →
denote_box b (id_circ : Box w w) ρ = ρ.

Lemma valid_id_circ : ∀ w, valid_ancillae_box' (@id_circ w).

Fact symmetric_gate_noop_source : ∀ n t k g c,
gate_acts_on k g →
noop_source n t c →
noop_source n t (g ⋅ c ⋅ g).

Fact init_at_noop : ∀ b m i j,
valid_ancillae_box'
(assert_at b (S m) i ⋅ init_at b (S m) j ⋅ init_at b m i).

Fact symmetric_ancilla_noop_source : ∀ n t k c b,
k < S n →
noop_source (S n) t c →
noop_source n t (assert_at b (n+t) k ⋅ c ⋅ init_at b (n+t) k).

Lemma source_symmetric_noop : ∀ n t c,
source_symmetric n t c → noop_source n t c.

Fact ancilla_free_X_at : ∀ n k pf_k, ancilla_free_box (X_at n k pf_k).

Fact ancilla_free_CNOT_at : ∀ n a b, ancilla_free_box (CNOT_at n a b).

Fact ancilla_free_Toffoli_at : ∀ n a b c,
ancilla_free_box (Toffoli_at n a b c).

Fact ancilla_free_seq : ∀ W W' W'' (c1 : Box W W') (c2 : Box W' W''),
ancilla_free_box c1 → ancilla_free_box c2 → ancilla_free_box (c1 ;; c2).
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Theorem source_symmetric_valid : ∀ (n t : N)
(c : Square_Box ((n + t) ⊗ Qubit)),
source_symmetric n t c →
valid_ancillae_box c.

Fact gate_acts_on_reversible : ∀ m g k (pf_g : @gate_acts_on m k g),
g ⋅ g ≡ id_circ.

Fact HOAS_Equiv_inSeq' :
∀ (w1 w2 w3 : WType) (b1 b1' : Box w1 w2) (b2 b2' : Box w2 w3),
b1 ≡ b1' → b2 ≡ b2' → b1;; b2 ≡ b1';; b2'.

Lemma symmetric_reversible : ∀ n t c (pf_sym : source_symmetric n t c),
symmetric_reverse n t c pf_sym ⋅ c ≡ id_circ.

C.18 Oracles.v

Lemma classical_merge_nil_l : ∀ Γ, [] ∪ Γ = Γ.

Lemma classical_merge_nil_r : ∀ Γ, Γ ∪ [] = Γ.

Lemma subset_classical_merge : ∀ Γ Γ1 Γ2,
Γ1 ∪ Γ2 ⊂ Γ → (Γ1 ⊂ Γ) * (Γ2 ⊂ Γ).

Lemma position_of_lt : ∀ v Γ W,
nth v Γ None = Some W → (position_of v Γ < JΓK).
Lemma singleton_nth_classical : ∀ Γ v,
singleton v Qubit ⊂ Γ → ∃ W, nth v Γ None = Some W.

Lemma get_wire_WT : ∀ Γ m n default (p : Pat (m ⊗ Qubit)),
(n < m) →
Γ ⊢ p :Pat →
{Γ1 : OCtx & {Γ2 : OCtx & Γ == Γ1 ● Γ2 &
Γ1 ⊢ get_wire n p default :Pat}}.

Lemma share_to_WT : ∀ n k, Typed_Box (share_to n k).

Lemma share_to_WT' : ∀ n k, Typed_Box (share_to' n k).

Lemma size_repeat_ctx : ∀ n W, size_ctx (repeat (Some W) n) = n.
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Lemma ctx_dom_repeat : ∀ n, ctx_dom (repeat (Some Qubit) n) = seq 0 n.

Lemma maps_to_repeat : ∀ v n W, v < n →
maps_to v (repeat (Some W) n) = Some v.

Lemma subst_pat_σ_n: ∀ W W' n (p : Pat W), (pat_max p < n) →
subst_pat (repeat (Some W') n) p = p.

Lemma pat_max_fresh : ∀ m n,
(pat_max (add_fresh_pat (n ⊗ Qubit) (repeat (Some Qubit) m)) < S (m+n)).

Lemma singleton_repeat : ∀ n W,
singleton n W = repeat None n ++ repeat (Some W) 1.

Lemma ctx_dom_none_repeat : ∀ m n,
ctx_dom (repeat None m ++ repeat (Some Qubit) n) = seq m n.

Lemma size_repeat_none : ∀ (n : N), size_ctx (repeat None n) = 0.

Lemma types_pat_fresh_ntensor : ∀ (Γ : Ctx) (n : N), n ≠ 0 →
Valid (repeat None (length Γ) ++ repeat (Some Qubit) n) ⊢
add_fresh_pat (n ⊗ Qubit) Γ :Pat.

Lemma qubit_at_reflect : ∀ v Γ,
qubit_at v Γ = true ↔ nth v Γ None = Some Qubit.

Lemma ntensor_fold : ∀ n W, W ⊗ (n ⊗ W) = (S n ⊗ W).

Lemma compile_WT : ∀ (b : bexp) (Γ : Ctx), Typed_Box (compile b Γ).

Lemma ctx_to_mat_list_length : ∀ Γ f, length (ctx_to_mat_list Γ f) = JΓK.
Lemma WF_ctx_to_matrix : ∀ Γ f,
WF_Matrix (2^JΓK) (2^JΓK) (ctx_to_matrix Γ f).

Lemma WF_ctx_to_mat_list : ∀ Γ f,
WF_Matrix (2^JΓK) (2^JΓK) (big_kron (ctx_to_mat_list Γ f)).

Lemma pure_bool_to_matrix : ∀ b, Pure_State (bool_to_matrix b).

Lemma pure_big_kron : ∀ (n : N) (l : list (Square n)) (A : Square n),
(∀ i : N, Pure_State (nth i l A)) → Pure_State (⊗ l).

Lemma mixed_big_kron : ∀ (n : N) (l : list (Square n)) (A : Square n),
(∀ i : N, Mixed_State (nth i l A)) → Mixed_State (⊗ l).
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Lemma big_kron_append : ∀ m n (l1 l2 : list (Matrix m n))
(A B : Matrix m n),
(∀ j, WF_Matrix m n (nth j l1 A)) →
(∀ j, WF_Matrix m n (nth j l2 B)) →
⊗ (l1 ++ l2) = (⊗ l1) ⊗ (⊗ l2).

Lemma pure_ctx_to_matrix : ∀ Γ f, Pure_State (ctx_to_matrix Γ f).

Lemma is_valid_singleton_merge : ∀ W (Γ : Ctx) n,
(length Γ ≤ n) → is_valid (Γ ⋓ singleton n W).

Lemma size_ctx_app : ∀ (Γ1 Γ2 : Ctx),
size_ctx (Γ1 ++ Γ2) = (size_ctx Γ1 + size_ctx Γ2).

Lemma singleton_length : ∀ n W, length (singleton n W) = (n + 1).

Lemma ctx_lookup_∃ : ∀ v Γ f, get_context (b_var v) ⊂ Γ →
ctx_to_mat_list Γ f !! position_of v Γ = Some (bool_to_matrix (f v)).

Fact CNOT_at_spec : ∀ (b1 b2 : B) (n x y : N) (li : list (Matrix 2 2)),
x < n → y < n → x ≠ y →
nth_error li x = Some (bool_to_matrix b1) →
nth_error li y = Some (bool_to_matrix b2) →JCNOT_at n x yK (⊗ li) = ⊗ (update_at li y (bool_to_matrix (b1 ⊕ b2))).

Fact Toffoli_at_spec : ∀ (b1 b2 b3 : B) (n x y z : N)
(li : list (Matrix 2 2)),
x < n → y < n → z < n → x ≠ y → x ≠ z → y ≠ z →
nth_error li x = Some (bool_to_matrix b1) →
nth_error li y = Some (bool_to_matrix b2) →
nth_error li z = Some (bool_to_matrix b3) →JToffoli_at n x y zK (⊗ li) =
⊗ (update_at li z (bool_to_matrix ((b1 && b2) ⊕ b3))).

Lemma init_at_spec : ∀ (b : B) (n i : N) (l1 l2 : list (Square 2))
(A B : Square 2), length l1 = i → length l2 = n - i →
(∀ j, Mixed_State (nth j l1 A)) → (∀ j, Mixed_State (nth j l2 B)) →
i < S n →Jinit_at b n iK (⊗ (l1 ++ l2)) = ⊗ (l1 ++ [bool_to_matrix b] ++ l2).

Theorem compile_correct : ∀ (b : bexp) (Γ : Ctx) (f : Var → B) (t : B),
get_context b ⊂ Γ →Jcompile b ΓK ((bool_to_matrix t) ⊗ (ctx_to_matrix Γ f)) =
bool_to_matrix (t ⊕ �b | �f) ⊗ ctx_to_matrix Γ f.
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