
Toward Formalizing the Q# Programming Language
Sarah Marshall 1 Kartik Singhal 2 Kesha Hietala 3 Robert Rand 2

1Microsoft Quantum 2University of Chicago 3University of Maryland

What is Q#?

Q# [1] is a hybrid quantum-classical programming language from Microsoft. It

supports execution on existing quantum hardware using Azure Quantum, but is

also designed for future large-scale, fault-tolerant quantum computing. Its key

features include:

Classical computation and control flow can be freely mixed with quantum

gates and measurements. For example, see the if statements and repeat loop
below.

Classical functions in Q# are pure, while quantum operations are effectful.

Higher-order operations and functions are supported.

Unitary operations can be automatically converted to their adjoint and

controlled versions.

Qubits are opaque types that act as references to logical qubits.

operation Entangle(q1 : Qubit, q2 : Qubit) : Unit is Adj {
H(q1);
CNOT(q1, q2);

}

Entangle(register , target);
Adjoint Entangle(message , register);

if MResetZ(message) == One { Z(target); }
if MResetZ(register) == One { X(target); }

message • H •

register H • •

target •

Figure 1. Quantum teleportation in Q# and an equivalent circuit.

mutable result = Zero;
mutable iterations = 0;

repeat {
ApplyCircuit(register);
set result = MResetZ(register[0]);
set iterations += 1;

} until result == Zero or iterations > limit;

Listing 1. Non-deterministic circuit using a repeat-until-success loop [2] in Q#.

λQ#: A core calculus for Q#

We aim to provide a formal specification and semantics for Q#. Following the

approach of language formalization efforts like Standard ML [3], we begin by

defining a small, well-typed core language, λQ#, which captures the essential

aspects of Q#. We will then prove properties about λQ# and define an elabo-

ration relation from the full Q# language to λQ#.

Grammar

τ ::= Types

| qbit qbit

| qref qref

| arr (τ1; τ2) τ1→ τ2
| cmd (τ) τ cmd
| unit unit

m ::= Commands

| ret (e) ret e
| bnd (e; x.m) bind x← e; m
| dcl (q.m) dcl q in m
| gateapr (e; U) U (e)
| ctrlapr (e1; e2; U) Controlled U (e1, e2)
| gateap [q](U) opaque gate

| ctrlap [q1, q2](U) opaque ctrl’d gate

e ::= Expressions

| x variable

| let (e1; x.e2) let x be e1 in e2
| lam {τ}(x.e) λ(x : τ)e
| ap (e1; e2) e1(e2)
| cmd (m) cmd m, encapsulation
| qloc [q] &q, qubit location
| triv (), unit constant

Statics (Typing rules for gate application)

cmd-GateApRef

Γ `Σ e : qref
Γ `Σ gateapr (e; U) : unit

cmd-GateAp

Γ `Σ,q∼qbit gateap [q](U) : unit

Dynamics (Evaluation rule for gate application with qubit reference)

trSm-GateApRefInstr

gateapr (qloc [q]; U) 7−→
Σ,q∼qbit

gateap [q](U)

Benefits of formalization

Like many programming languages, Q# was designed without a precise formal

specification, which can lead to ambiguity in its interpretation. A formal spec-

ification allows us to prove properties about Q#’s type system and provides a

foundation for the development of new features, like the one discussed below.

Statically preventing cloning

Q# supports aliasing qubit references. Some programs are accepted by the com-

piler that will fail at runtime. For example, applying CNOT(q1, q2) below will fail
because q1 and q2 both refer to the same physical qubit.

use q1 = Qubit();
let q2 = q1;
CNOT(q1, q2); // Bad!

(a) An invalid use of a qubit alias.

dcl q in

let q1 be &q in

let q2 be q1 in

Controlled X (q1, q2)

(b) The elaboration of (a) to λQ#.

However, many Q# programs leverage qubit aliasing with arrays to succinctly

express quantum programs, like the example below, which applies CNOT to adjacent
qubit pairs (q1, q2), (q2, q3), . . . , (qn−1, qn).

operation ApplyCNOTChain(qs : Qubit[]) : Unit is Adj + Ctl {
ApplyToEachCA(CNOT, Zipped(Most(qs), Rest(qs)));

}

Q# currently cannot statically prevent cloning. We are working on a solution to

this issue as part of our formal specification, taking inspiration from λRust [4].

Allowing correct programs like ApplyCNOTChain while rejecting incorrect programs
like CNOT(q1, q2) is difficult. In ApplyCNOTChain, it is not as obvious that the ar-
guments to CNOT are distinct. The type system must infer that Most(qs)[i] and
Rest(qs)[i] are distinct qubits for all indices i.

References

[1] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov,

Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#: Enabling Scalable Quantum Computing and Develop-

ment with a High-level DSL. In Proc. RWDLS ’18, pages 7:1–7:10. ACM, 2018, arXiv:1803.00652.

[2] Adam Paetznick and Krysta M. Svore. Repeat-until-success: Non-deterministic decomposition of single-qubit

unitaries, 2014, arXiv:1311.1074.

[3] Robert Harper and Chris Stone. A type-theoretic interpretation of StandardML. In Proof, Language, and Interaction:

Essays in Honor of Robin Milner, pages 341–387. MIT Press, Cambridge, MA, 2000. URL https://www.cs.cmu.
edu/~rwh/papers/ttisml/ttisml.pdf.

[4] Ralf Jung. Understanding and Evolving the Rust Programming Language. PhD thesis, Saarland University, 2020. URL

https://people.mpi-sws.org/~jung/thesis.html.

http://ks.cs.uchicago.edu/project/qsharp-essence/ Quantum Physics and Logic 2021, Gdańsk (Virtual) sarah.marshall@microsoft.com

https://www.cs.cmu.edu/~rwh/papers/ttisml/ttisml.pdf
https://www.cs.cmu.edu/~rwh/papers/ttisml/ttisml.pdf
https://people.mpi-sws.org/~jung/thesis.html
http://ks.cs.uchicago.edu/project/qsharp-essence/
mailto:sarah.marshall@microsoft.com

	References

