Toward Formalizing the Q# Programming Language

Sarah Marshall?

Microsoft Quantum

Kartik Singhal¢ Kesha Hietala 3

University of Chicago

Robert Rand @
3University of Maryland

What is Q#?

Ao« A core calculus for Q#

Benefits of formalization

Q# [1] is a hybrid quantum-classical programming language from Microsoft. It
supports execution on existing quantum hardware using Azure Quantum, but is
also designed for future large-scale, fault-tolerant guantum computing. Its key
features include:

= Classical computation and control flow can be freely mixed with quantum
ogates and measurements. For example, see the if statements and repeat l0Op
below.

= Classical functions in Q# are pure, while guantum operations are effectful.
= Higher-order operations and functions are supported.

= Unitary operations can be automatically converted to their adjoint and
controlled versions.

= Qubits are opaque types that act as references to logical qubits.

operation Entangle(ql : Qubit, g2 : Qubit) : Unit is Adj {
H(ql);
CNOT(ql, q2);

+

Entangle(register, target);
Adjoint Entangle(message, register);

if MResetZ(message) == 0One { Z(target); }
if MResetZ(register) == 0One { X(target); }

message i H— A
register — H L D ﬁé:l
L/ L/

target

Figure 1. Quantum teleportation in Q# and an equivalent circuit.

mutable result = Zero;
mutable iterations = O0;
repeat {

ApplyCircuit (register) ;
set result = MResetZ(register [0]);
set 1terations += 1;
} until result == Zero or iterations > limit;

Listing 1. Non-deterministic circuit using a repeat-until-success loop [2] in Q#.

We aim to provide a formal specification and semantics for Q#. Following the
approach of language formalization efforts like Standard ML [3], we begin by
defining a small, well-typed core language, Ao, which captures the essential
aspects of Q#. We will then prove properties about Agx and define an elabo-
ration relation from the full Q# language to A\g.

Grammar
T = Types m = Commands
qbit qbit ret (e) ret e
qref gref bnd (e; x.m) bind x + e;m
arr (1;7) T — T dcl (.m) dcl g inm
cmd (7) 7 cmd gateapr (¢; U) U (e)
unit unit ctrlapr (ej; eo; U) Controlled U (eq, es)
gateap |/|(U) opague gate
ctrlap [, [(U) opaque ctrl'd gate
e = Expressions
T variable

let (eq; x.€9) let x be e In e

lam {7}(z.e) A(x:7)e

ap (61; 62) 61(62)

cmd (m) cmd m, encapsulation
qloc || &, qubit location
triv (), unit constant

Statics (Typing rules for gate application)

cmd-GateApRef

[by e : gref cmd-GateAp

[' Fy, gateapr (e; U) : unit [' s ~qpbit gateap [¢|(U) : unit

Dynamics (Evaluation rule for gate application with qubit reference)

trSm-GateApReflnstr

gateapr (qloc[(|:U) — gateap |(|(U)

Quantum Physics and Logic 2021, Gdansk (Virtual)

Like many programming languages, Q# was designed without a precise formal
specification, which can lead to ambiguity in its interpretation. A formal spec-
ification allows us to prove properties about Q#’s type system and provides a
foundation for the development of new features, like the one discussed below.

Statically preventing cloning

Q# supports aliasing qubit references. Some programs are accepted by the com-
piler that will fail at runtime. For example, applying cnoT(q1, q2) below will fall
because q1 and q2 both refer to the same physical qubit.

dcl ¢ in

let ¢; be &g In

let go be ¢ In
Controlled X (g1, go)

use ql = Qubit ();
let q2 = q1il;
CNOT(ql, q2); // Bad!

(a) An invalid use of a qubit alias. (b) The elaboration of (a) to Ag.

However, many Q# programs leverage qubit aliasing with arrays to succinctly
express quantum programs, like the example below, which applies cnoT to adjacent

qult paiI’S (Q17 QQ>7 (QQa Q3)7 SRR (QH—D Q’n)

operation ApplyCNOTChain(gs : Qubit[]) : Unit is Adj + Ctl A
ApplyToEachCA(CNOT, Zipped(Most(qgs), Rest(qgs)));
by

Q# currently cannot statically prevent cloning. \We are working on a solution to
this issue as part of our formal specification, taking inspiration from Apust [41.

Allowing correct programs like ApplyCNOTChain While rejecting incorrect programs
ike cnOT(q1, q2) Is difficult. In ApplyCNOTChain, It is not as obvious that the ar-
cuments to cnot are distinct. The type system must infer that Most(gs) [1] and
Rest(gs) [1] are distinct qubits for all indices 1.

References

1] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov,
Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#: Enabling Scalable Quantum Computing and Develop-
ment with a High-level DSL. In Proc. RWDLS "18, pages /:1-/:10. ACM, 2018, arXiv:1803.00652.

2] Adam Paetznick and Krysta M. Svore. Repeat-until-success: Non-deterministic decomposition of single-qubit
unitaries, 2014, arXiv:1311.10/4.

3] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML. In Proof, Language, and Interaction:
Essays in Honor of Robin Milner, pages 341-387/. MIT Press, Cambridge, MA, 2000. URL https://www.cs.cmu.
edu/~rwh/papers/ttisml/ttisml.pdf.

(4] Ralf Jung. Understanding and Evolving the Rust Programming Language. PhD thesis, Saarland University, 2020. URL
https://people.mpi-sws.org/~jung/thesis.html.

sarah.marshall@microsoft.com

http.//ks.cs.uchicago.edu/project/qgsharp-essence/

https://www.cs.cmu.edu/~rwh/papers/ttisml/ttisml.pdf
https://www.cs.cmu.edu/~rwh/papers/ttisml/ttisml.pdf
https://people.mpi-sws.org/~jung/thesis.html
http://ks.cs.uchicago.edu/project/qsharp-essence/
mailto:sarah.marshall@microsoft.com

	References

