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1 INTRODUCTION
In “Gottesman Types for Quantum Programs” [Rand et al. 2020], we proposed a type system for

quantum circuits based on Gottesman’s [1998] characterization of the Clifford set of gates 𝐻 , 𝑆

and 𝐶𝑁𝑂𝑇 . This type system interprets 𝐻 : Z → X to say that the Hadamard gate 𝐻 takes a qubit

in the 𝑍 basis {|0⟩ , |1⟩} to a qubit in the 𝑋 basis {|+⟩ , |−⟩}, that is 𝑋 = 𝐻𝑍𝐻 †
. We extended the

system to allow us to take the intersection of types, which corresponds to conjunction. For instance,

the Bell state |Φ+⟩ has the type (X ⊗ X) ∩ (Z ⊗ Z) (the joint eigenvectors of both components) and

a Hadamard gate is fully specified by 𝐻 : (X → Z) ∩ (Z → X).
A key feature of this system and the extensions discussed below is that the base types correspond

to matrices: in the original system, Pauli operators and in the extension, general Hermitian matrices.

Notationally, we will use uppercase letters 𝑈 ,𝑉 , . . . for unitaries, and for a Hermitian matrix 𝐴,

its corresponding type will be A. It suffices to fully specify a gate’s type by its actions on every

permutation of X and Z inputs as they provide an information-theoretically complete description

of the gate (Y = 𝑖X ∗ Z because 𝑌 = 𝑖𝑋𝑍 ). Figure 1 shows a representative set of typing rules for

our original system.

Our type system also made judgments about the separability of a qubit from the rest of the

quantum state. We used the notation A × B to represent a separable state, whose first component

is in the 𝐴 basis and whose second is in the 𝐵 basis. With this, we gave a 𝐶𝑁𝑂𝑇 gate the type

X × X → X × X (among others), indicating that it preserves the separability of a pair of X qubits.

In this work, we revise the separability judgments to allow for more precise reasoning about the

separability across an arbitrary partition of a multi-qubit system, introduce typing judgments for

measurement in the computational basis, along with a normalization technique that facilitates

measurement, and extend the type system to a universal set of quantum gates, namely the Clifford+T

group. In our prior work, we said that 𝑇 has the type Z → Z but left its behavior, when applied to

an X qubit, unspecified. Here we address this shortcoming by allowing linear combination types
(or LC-types) like

1√
2

(X + Z). We apply our extended typing rules to fully derive the type of gate

injection circuits [Nielsen and Chuang 2010, §10.6.2] for non-Clifford gates such as 𝑇 .

A crucial difference from our previous work is a narrower interpretation of types along with

their signs. Here, in contrast to the above, +A (resp. −A) corresponds to the +1 (resp. −1) eigenspace
of 𝐴. While this makes type inference for some terms more involved, it is essential to correctly

type measurement for LC-types. It also finds application in the realm of quantum error-correcting

codes, where the signs match the error syndromes.

The revised approach to separability and treatment of measurement, both on stabilizer states,

appear in our January 2021 preprint [Rand et al. 2021], whereas the addition of 𝑇 and LC-types is

being presented for the first time here and is discussed in more detail.
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𝐻 : (X → Z) ∩ (Z → X) 𝑆 : (X → Y) ∩ (Z → Z)
𝐶𝑁𝑂𝑇 : (X ⊗ I → X ⊗ X) ∩ (I ⊗ X → I ⊗ X) ∩ (Z ⊗ I → Z ⊗ I) ∩ (I ⊗ Z → Z ⊗ Z)

𝑔 : A 𝑔 : B

𝑔 : A ∩ B
∩-I

𝑔 : A ∩ B

𝑔 : A
∩-E

𝑔 : A → A′ 𝑔 : B → B′

𝑔 : A ∗ B → A′ ∗ B′ ∗
𝑔 : A → B

𝑔 : A ⊗ I → B ⊗ I
⊗

𝑝1 : A → B 𝑝2 : B → C

𝑝1;𝑝2 : A → C
cut

𝑝 : A → A′ 𝑐 ∈ {−1, 𝑖}
𝑝 : 𝑐A → 𝑐A′ scale

Fig. 1. Some sample types and typing rules

2 SEPARABILITY FOR STABILIZER STATES
In our previous work, we showed that the type I𝑚 ⊗ A ⊗ I𝑛 is separable into the𝑚 + 1

th
qubit and

the remainder of the state [Rand et al. 2020, Corollary 1]. Here we introduce the notation A𝑖 (for

any type A) to represent a state where the 𝑖th qubit is separable from the rest of the system and is

an eigenvector of 𝐴. For example, the two qubit system |0⟩ ⊗ |+⟩ has the type Z1 ∩ X2.

We explain how to generalize beyond single qubit separability with the following example.

Consider a 2-qubit type (X ⊗ X ∩ Z ⊗ Z) whose joint eigenspace is spanned by the two maximally

entangled Bell states {|Φ+⟩ , |Ψ−⟩}. Also, consider an 𝑛-qubit state with this type on the first and

third qubits. Being maximally entangled, these qubits should be disjoint from the rest of the system

and hence, its type is (X⊗X∩Z⊗ Z)1,3. If the second and fourth qubits are similarly entangled, the

system has type (X ⊗ X ∩ Z ⊗ Z)1,3 ∩ (X ⊗ X ∩ Z ⊗ Z)2,4. In general, to separate 𝑘 out of 𝑛 qubits,

we require that the intersection type has a joint eigenspace of dimension 2
𝑘−1

on the 𝑘 qubits. This

is satisfied if there exist 𝑘 pairwise commuting terms where each term is the tensor products of

Paulis on the 𝑘 qubits along with I’s on the rest of the system [Rand et al. 2021, Proposition 4.3].

3 TYPING MEASUREMENT FOR STABILIZER STATES
To understand the intuition behind typing measurements, it helps to identify intersection types

with the joint eigenspaces of their matrices. Then, unitary evolution preserves this structure by

rotating each eigenspace equally, which can be deduced term by term. However, the application of

a measurement operation could completely change the structure of the joint eigenspace. Hence,

finding the post-measurement type may require modifications to the type as a whole.

For simplicity, let us consider measuring the first qubit of an 𝑛-qubit stabilizer state in the 𝑍 -basis

with outcome +1.1 First, observe that the measurement collapses the state to be an eigenstate

of (+Z)1 and so this type should be added as a term to the intersection. As the resulting state is

separable in the first factor, it takes the form |0⟩ ⊗ |𝜓 ⟩.
Any term A in the intersection type that commutes with (+Z)1 already has joint eigenvectors

with it and so can be left unchanged, except perhaps for its sign which would need to be updated

to be the eigenvalue of |0⟩ ⊗ |𝜓 ⟩.
However, a term in the intersection that anti-commutes with (+Z)1 must have a leading factor

of X or Y. Such a term cannot have |0⟩ ⊗ |𝜓 ⟩ as an eigenvector as it will not fix the leading state to

|0⟩. Thus it must be removed from the intersection, or equivalently replaced by I𝑛 .

1
The analysis is similar for a −1 outcome with appropriate sign changes.
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The critical idea, as laid out in Gottesman [1998, §7], is that if there are multiple anti-commuting

terms in the intersection, then we do not remove them all. Rather, we note that if two terms

both anti-commute with Z1 then their product will commute with Z1. Thus, we can rewrite the

intersection type using the rule A ∩ B = A ∩ A ∗ B.2 Moreover, in the case of stabilizer states, it is

known that there will be at most one anti-commuting term that will have to be removed, making

the calculation of the post-measurement state efficient.

4 TYPES FOR UNIVERSAL QUANTUM COMPUTATION
To type non-Clifford gates, we need to expand our type system to include LC-types, i.e., linear

combinations of X, Y and Z. For any operator 𝐶 , and Pauli operators 𝑃,𝑄 , we have 𝐶 (𝑃 +𝑄)𝐶† =
𝐶𝑃𝐶† + 𝐶𝑄𝐶†

, and so we can derive arrow types beyond stabilizer states associated to Pauli

operators. Consider the set M of one-qubit Hermitian operators with eigenvalues +1 and −1.
Clearly 𝑋,𝑌, 𝑍 ∈ M, and in fact,

M = {𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 : 𝑎, 𝑏, 𝑐 ∈ R with 𝑎2 + 𝑏2 + 𝑐2 = 1}.
This is just another presentation of the Bloch sphere. More directly, any one-qubit unitary has the

form [Nielsen and Chuang 2010, Equation 4.8]:

𝑈 = 𝑡𝐼 + 𝑖𝑎𝑋 + 𝑖𝑏𝑌 + 𝑖𝑐𝑍
where 𝑡, 𝑎, 𝑏, 𝑐 ∈ R with 𝑡2 + 𝑎2 + 𝑏2 + 𝑐2 = 1. Taking 𝑡 → 0 gives 𝑈 = 𝑖𝑎𝑋 + 𝑖𝑏𝑌 + 𝑖𝑐𝑍 , which is

clearly also anti-Hermitian (𝑈 † = −𝑈 ). But the leading 𝑖 is just a global phase, which we may drop

to obtain an element of M.

For any 𝑀 = 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 ∈ M we associate a type M, consisting of the eigenstate |𝑚⟩ (with
type −M consisting of the (−1)-eigenstate | −𝑚⟩). Any 1-qubit Clifford operator has the arrow type

𝐶 : M → 𝑎𝐶 (X) + 𝑖𝑏𝐶 (X) ∗𝐶 (Z) + 𝑐𝐶 (Z).
The above arguments hold for any unitary, not just Clifford operators. So we can extend Gottes-

man types to non-Clifford operators by allowing the codomain of the arrow to be types associated

to operators in M. For example, the 𝑇 gate, which in Rand et al. [2020] had type X → ⊤, now has

the full intersection type (see, for example, Matsumoto and Amano [2008, Equation 12])

𝑇 : (X → 1√
2

(X + Y)) ∩ (Z → Z).

We can easily show 𝑇 : Y → 1√
2

(Y − X), but we can also derive other arrow types for 𝑇 on

non-stabilizer states. Using our M from above,

𝑇 : M = 𝑎X + 𝑏Y + 𝑐Z → 𝑎√
2

(X + Y) + 𝑏√
2

(Y − X) + 𝑐Z.

For instance, we can now derive the type for 𝑆 = 𝑇 ;𝑇 on X as

X → 1

√
2

( 1

√
2

(X + Y) + 1

√
2

(Y − X)) = 1

2

Y + 1

2

Y = Y

and trivially 𝑇 ;𝑇 : Z → Z. We can similarly derive that 𝑇 †
(a sequence of seven 𝑇 ’s or 𝑍 ; 𝑆 ;𝑇 ) has

type X → 1√
2

(X − Y).
Measurement of general LC-types can be complicated. However for certain instances, we can

provide concrete rules for how types transform under measurement. Consider measuring the first

qubit in the 𝑍 basis using a state of type

|0⟩ ⊗ |𝜓 ⟩ + |1⟩ ⊗ |𝜙⟩ : 𝑎I ⊗ K + 𝑏Z ⊗ L.

2
This holds as the joint eigenspace of 𝐴 and 𝐵 is the same as that of 𝐴 and 𝐴𝐵.
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This means that the given state is a (+1)-eigenstate of the associated operator:

(𝑎𝐼 ⊗ 𝐾 + 𝑏𝑍 ⊗ 𝐿) ( |0⟩ ⊗ |𝜓 ⟩ + |1⟩ ⊗ |𝜙⟩) = |0⟩ ⊗ |𝜓 ⟩ + |1⟩ ⊗ |𝜙⟩ .
But a direct computation gives

(𝑎𝐼 ⊗ 𝐾 + 𝑏𝑍 ⊗ 𝐿) ( |0⟩ ⊗ |𝜓 ⟩ + |1⟩ ⊗ |𝜙⟩) = |0⟩ ⊗ (𝑎𝐾 + 𝑏𝐿) |𝜓 ⟩ + |1⟩ ⊗ (𝑎𝐾 − 𝑏𝐿) |𝜙⟩ .
Comparing terms: (𝑎𝐾+𝑏𝐿) |𝜓 ⟩ = |𝜓 ⟩ and (𝑎𝐾−𝑏𝐿) |𝜙⟩ = |𝜙⟩. Therefore wemay claim that the post-

measurement type leaves this term unchanged.Withmeasurement projectionsΠ𝑍
0
= 1

2
(𝐼𝑛+𝑍⊗𝐼𝑛−1)

and Π𝑍
1
= 1

2
(𝐼𝑛 − 𝑍 ⊗ 𝐼𝑛−1), regardless of the observed outcome

Π𝑍
0
( |0⟩ ⊗ |𝜓 ⟩ + |1⟩ ⊗ |𝜙⟩) = |0⟩ ⊗ |𝜓 ⟩ : 𝑎I ⊗ K + 𝑏Z ⊗ L, or

Π𝑍
1
( |0⟩ ⊗ |𝜓 ⟩ + |1⟩ ⊗ |𝜙⟩) = |1⟩ ⊗ |𝜙⟩ : 𝑎I ⊗ K + 𝑏Z ⊗ L.

Note that we purposefully used Z to fix the sign differences between the measurement outcomes.
3

Yet, by correcting the sign in the measurement outcome, we have obfuscated a critical feature:

after measurement, the measured qubit is separable from the rest of the system. Revisiting the

above computation

Π𝑍
0
( |0⟩ ⊗ |𝜓 ⟩ + |1⟩ ⊗ |𝜙⟩) = |0⟩ ⊗ |𝜓 ⟩ : 𝑎I ⊗ K + 𝑏I ⊗ L = I ⊗ (𝑎K + 𝑏L)

Π𝑍
1
( |0⟩ ⊗ |𝜓 ⟩ + |1⟩ ⊗ |𝜙⟩) = |1⟩ ⊗ |𝜙⟩ : 𝑎I ⊗ K − 𝑏I ⊗ L = I ⊗ (𝑎K − 𝑏L).

Since we additionally know the state is of type ±Z1, where the sign is the measurement outcome,

we can conclude that the post-measurement state has type{
Z1 ∩ (𝑎K + 𝑏L)2,...,𝑛 if 0 was measured,

−Z1 ∩ (𝑎K − 𝑏L)2,...,𝑛 if 1 was measured.

That is, we have identified the post-measurement type (conditioned on the outcome of the mea-

surement) of an (𝑛 − 1)-qubit factor in our 𝑛-qubit system. While this may be troublesome from

the perspective of static typechecking, many quantum algorithms and protocols rely on post-

measurement corrections, as we will illustrate in the next section.

5 EXAMPLE: GATE INJECTION THROUGHMAGIC STATES
A standard approach to universal quantum computation implements non-Clifford gates on quantum

codes using “magic” states through a method called gate injection. For concreteness, we focus on

1-qubit rotations about the 𝑍 -axis, by which we mean unitaries of type

𝑈 : (X → M) ∩ (Z → Z) (1)

for some 𝑀 ∈ M. While we could write explicit matrix identities for such unitaries, let us see

what we can derive by simply appealing to typing judgements. Note that these arrow types mean

𝑈𝑍𝑈 † = 𝑍 and𝑈𝑋𝑈 † = 𝑀 . Since𝑋 and𝑍 anti-commute, so do𝑀 and𝑍 and therefore𝑀 = 𝑎𝑋 +𝑏𝑌
where 𝑎2 + 𝑏2 = 1. Unsurprisingly, 𝑇 fits this mold with 𝑎 = 𝑏 = 1√

2

. We will parameterize 𝑎 = cos𝜃

and 𝑏 = sin𝜃 ; by direct computation𝑈 : Y → − sin𝜃 · X + cos𝜃 · Y, so𝑈 acts to rotate types in the

𝑋/𝑌 -plane of the Bloch sphere by an angle 𝜃 .

We claim that we can implement𝑈 using the state |𝑚⟩ : M with the circuit of Figure 2. Note that

𝑈 has the type from Equation (1), but the circuit of Figure 2 is a 2-qubit gate and so we would like

to show it has type (Z2 → Z2) ∩ (X2 → M2). Specifically, we prove the circuit is of type
(M1 ∩ Z2 → ±Z1 ∩ Z2) ∩ (M1 ∩ X2 → ±Z1 ∩M2)

where the sign in this type is the outcome of the measurement.

3
Namely, |1⟩ ⊗ |𝜙 ⟩ : 𝑎I ⊗ K − 𝑏 (−Z) ⊗ L = 𝑎I ⊗ K + 𝑏Z ⊗ L.
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|𝑚⟩
|𝜓 ⟩ 𝑈 2 𝑈 |𝜓 ⟩

Fig. 2. Gate injection circuit for Z-type rotations𝑈 .

Beginning withM1 ∩ Z2 which is equivalent toM ⊗ I∩ I ⊗ Z we evaluate the effect of the circuit

on each term of the intersection:

(cos𝜃 · X + sin𝜃 · Y) ⊗ I
𝑁𝑂𝑇𝐶−→ cos𝜃 · X ⊗ I + sin𝜃 · Y ⊗ Z

𝑀𝑒𝑎𝑠1−→ I2

I ⊗ Z
𝑁𝑂𝑇𝐶−→ I ⊗ Z

𝑀𝑒𝑎𝑠1−→ I ⊗ Z.

And so depending on the sign of our measured first qubit we get the post-measurement type

I2 ∩ (I ⊗ Z) ∩ (±Z ⊗ I) = ±Z1 ∩ Z2 .

Now turning to the case M1 ∩ X2 = M ⊗ I ∩ I ⊗ X we evaluate:

(cos𝜃 · X + sin𝜃 · Y) ⊗ I
𝑁𝑂𝑇𝐶−→ cos𝜃 · X ⊗ I + sin𝜃 · Y ⊗ Z

I ⊗ X
𝑁𝑂𝑇𝐶−→ X ⊗ X.

Now, however, our input to the measurement

(cos𝜃 · X ⊗ I + sin𝜃 · Y ⊗ Z) ∩ (X ⊗ X)
has too many terms with an X in the first factor. Multiplying the second term into the first has

(cos𝜃 · I ⊗ X + sin𝜃 · Z ⊗ Y) ∩ (X ⊗ X).
Now we apply the conclusion of the previous section to write the post-measurement state as{

Z1 ∩ (cos𝜃 · X + sin𝜃 · Y)2 if 0 was measured,

−Z1 ∩ (cos𝜃 · X − sin𝜃 · Y)2 if 1 was measured.

So we see that upon measuring 0 the resulting state is of type Z1 ∩ M2 as desired. But upon

measuring 1 we have resulting type −Z1 ∩ (cos(−𝜃 ) · X + sin(−𝜃 ) · Y)2, and so have accomplished

the rotation in the opposite direction. That is, we have implemented𝑈 †
and so doing a post-selected

correction of𝑈 2
, as shown in Figure 2, produces output type −Z1 ∩M2 as desired.

We have shown that the circuit of Figure 2 implements the operator𝑈 without ever applying

that operator, though𝑈 2
is applied as a post-measurement correction. For example, setting 𝑈 to 𝑇

gives us a non-Clifford unitary leading to universal computation while𝑈 2 = 𝑆 is Clifford.

6 TYPECHECKING EFFICIENCY
Finally, we address the question of how efficiently quantum circuits can be typechecked. Stabi-

lizer states evolving under Clifford operations are known to have succinct canonical represen-

tations [Aaronson and Gottesman 2004]. Similarly, pure unitary evolution in our system can be

linearly typechecked and our row echelonization-inspired normalization procedure [Rand et al.

2021, §5.1] allows us to typecheck circuits with measurements in O(𝐺𝑁 + 𝑁 2) time, where 𝑁 is

the number of qubits and 𝐺 the number of gates. By contrast, our LC-types cannot be efficiently

typechecked in the general case, unless 𝑃 = 𝐵𝑄𝑃 . That said, certain common Clifford+T circuits,

like the Toffoli gate applied to classical qubits, can be efficiently typechecked as the LC-types

simplify to Paulis. We leave characterizing the set of circuits that our expanded type system can

check efficiently for future work.
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