
Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE
(pronounced “squire”) that can be used as an
intermediate representation (IR) in a certified compiler
for quantum programs. SQIRE is implemented in Coq [2],
on top of libraries developed for the QWIRE language [9].
This allows us to formally verify properties of SQIRE
programs and program transformations. We demonstrate
the power of SQIRE as a compiler intermediate
representation by verifying a number of useful program
transformations. For example, we verify soundness of an
optimization that removes unnecessary X gates from a
unitary program. We also consider a transformation that
turns general SQIRE programs into SQIRE programs that
can run on a linear nearest neighbor architecture.

The full paper [5] and code [3] are available online.

Abstract

[1] The CompCert Verified Compiler. Available at http://compcert.inria.fr/.
[2] The Coq Proof Assistant. Available at https://coq.inria.fr/.
[3] SQIRE Development. Available at https://github.com/inQWIRE/SQIRE.
[4] Qiskit. Available at https://qiskit.org/.
[5] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael
Hicks. Verified Optimization in a Quantum Intermediate Representation.
arXiv:1904.06319.
[6] Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC: Scalable Compilation
and Analysis of Quantum Programs. Parallel Computing 45. 2015.
[7] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri
Maslov. Automated Optimization of Large quantum Circuits with
Continuous Parameters. npj Quantum Information 4(1). 2018.
[8] Robert Rand, Kesha Hietala, and Michael Hicks. Formal Verification vs.
Quantum Uncertainty. SNAPL 2019.
[9] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE Practice:
Formal Verification of Quantum Circuits in Coq. QPL 2017.

References

Our work is a first step towards a certified compiler for
quantum programs [8]. In the long term, we envision a
fully-verified compilation stack from high-level quantum
languages to hardware instructions, as shown below.

Ongoing work:
• Additional verified optimizations and mapping

algorithms taking inspiration from existing compilation
infrastructures like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce resource
usage to make programs more feasible to run on near-
term machines, circuit mapping aims to address the
connectivity constraints of near-term machines. Circuit
mapping algorithms take as input an arbitrary program
and output a program that respects the connectivity
constraints of some underlying architecture.

As a simple illustration of certified circuit mapping, we
map circuits to a linear nearest neighbor (LNN)
architecture. We map a program to this architecture by
adding SWAP operations before and after every CNOT so
that the target and control are adjacent when the CNOT
is performed, and are returned to their original positions
before the next operation.

Example. On the following 4-qubit LNN architecture,
“CNOT 1 3” becomes “SWAP 1 2; CNOT 2 3; SWAP 1 2”.

We have proven that this transformation is sound, and
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of
a piece of software is known as formal verification. Formal
verification is particularly useful in the field of quantum
computing, where standard software assurance
techniques such as unit testing and runtime debugging
are infeasible.

Examples of formal verification that have been applied in
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that
a quantum program satisfies some specification. For
example, given a program describing the quantum
teleportation protocol, the goal may be to prove that the
program correctly “teleports” any input qubit to the
receiver.

Example. Prove that the following holds for any state ∣ψ⟩.

Another useful application of formal verification, which
has received relatively little attention from the quantum
formal verification community, is proving the correctness
of program transformations. Verifying program
transformations allows the construction of certified
compilers, which are compilers that guarantee that the
executable code they output behaves as specified by the
input source program. A notable example of a certified
compiler (for classical programs) is CompCert [1], an
optimizing compiler for C proved correct using the Coq
proof assistant.

Formal Verification

SQIRE supports five quantum programming constructs:
skip, sequencing, unitary application, measurement of a
single qubit, and resetting a single qubit to a fixed basis
state.

For simplicity, we support a fixed set of gates. This set can
be extended in our implementation, or new gates can be
defined in terms of built-in gates. For example, we define
the swap operation as follows.

We can then state and prove properties about the
semantics of the defined operations. For example, we can
prove that the SWAP program swaps its arguments, as
intended.

Example. Superdense coding is a protocol that allows a
sender to transmit two classical bits, b1 and b2, to a
receiver using a single quantum bit. The circuit and SQIRE
program for superdense coding are shown below.

Although SQIRE was designed to be used as an
intermediate representation, we can also prove properties
about SQIRE programs directly, since these programs and
their semantics are embedded in Coq. For example, we
can prove that the result of evaluating the program
superdense b1 b2 on an input state consisting of two
qubits initialized to zero is the state ∣b1, b2⟩. We write this
as follows.

In our development, we also verify the correctness of
n-qubit GHZ state preparation, quantum teleportation,
and the n-qubit Deutsch-Jozsa algorithm.

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able
to perform small computations before decoherence takes
effect, compilers for quantum programs must apply
sophisticated optimizations to reduce resource usage.
These optimizations can be complicated to implement
and are vulnerable to programmer error. It is thus
important to verify that the implementations of these
optimizations are correct.

In general, we will be interested in proving that a
transformation is semantics-preserving, meaning that the
transformation does not change the behavior of the
program.

Example. The following optimization removes skip
operations from a program.

To ensure that this transformation is semantics-
preserving, we prove the following lemma.

In our development, we also verify soundness of an
optimization from a recent circuit optimizer [7] that
removes unnecessary X gates from a unitary program.

Verified Optimization

High-level Language
E.g. QWIRE, Quipper, Q#

General Purpose IR
E.g. SQIRE, Open QASM, Quil

Machine-specific IR

Hardware Instructions

Hardware Description
E.g. Gate set, connectivity
constraints, error model

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research Quantum
Testbed Pathfinder Program under Award Number
DE-SC0019040.

Acknowledgments

∣ψ⟩Sender

Receiver ∣ψ⟩
∣β00⟩

TELEPORT

H X Z

b2 b1

H∣0⟩

∣0⟩

b1

b2

bell00 decode

encode

4321

