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We present a simple quantum language we call SQIRE 
(pronounced “squire”) that can be used as an 
intermediate representation (IR) in a certified compiler 
for quantum programs. SQIRE is implemented in Coq [2], 
on top of libraries developed for the QWIRE language [9]. 
This allows us to formally verify properties of SQIRE 
programs and program transformations. We demonstrate 
the power of SQIRE as a compiler intermediate 
representation by verifying a number of useful program 
transformations. For example, we verify soundness of an 
optimization that removes unnecessary X gates from a 
unitary program. We also consider a transformation that 
turns general SQIRE programs into SQIRE programs that 
can run on a linear nearest neighbor architecture. 

The full paper [5] and code [3] are available online.
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Our work is a first step towards a certified compiler for 
quantum programs [8]. In the long term, we envision a 
fully-verified compilation stack from high-level quantum 
languages to hardware instructions, as shown below.

Ongoing work:
• Additional verified optimizations and mapping 

algorithms taking inspiration from existing compilation 
infrastructures like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce resource 
usage to make programs more feasible to run on near-
term machines, circuit mapping aims to address the 
connectivity constraints of near-term machines. Circuit 
mapping algorithms take as input an arbitrary program 
and output a program that respects the connectivity 
constraints of some underlying architecture.

As a simple illustration of certified circuit mapping, we 
map circuits to a linear nearest neighbor (LNN) 
architecture. We map a program to this architecture by 
adding SWAP operations before and after every CNOT so 
that the target and control are adjacent when the CNOT 
is performed, and are returned to their original positions 
before the next operation. 

Example. On the following 4-qubit LNN architecture, 
“CNOT 1 3” becomes “SWAP 1 2; CNOT 2 3; SWAP 1 2”.

We have proven that this transformation is sound, and 
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of 
a piece of software is known as formal verification.  Formal 
verification is particularly useful in the field of quantum 
computing, where standard software assurance 
techniques such as unit testing and runtime debugging 
are infeasible.

Examples of formal verification that have been applied in 
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that 
a quantum program satisfies some specification. For 
example, given a program describing the quantum 
teleportation protocol, the goal may be to prove that the 
program correctly “teleports” any input qubit to the 
receiver.

Example. Prove that the following holds for any state ∣ψ⟩.

Another useful application of formal verification, which 
has received relatively little attention from the quantum 
formal verification community, is proving the correctness 
of program transformations. Verifying program 
transformations allows the construction of certified 
compilers, which are compilers that guarantee that the 
executable code they output behaves as specified by the 
input source program. A notable example of a certified 
compiler (for classical programs) is CompCert [1], an 
optimizing compiler for C proved correct using the Coq 
proof assistant. 

Formal Verification

SQIRE supports five quantum programming constructs: 
skip, sequencing, unitary application, measurement of a 
single qubit, and resetting a single qubit to a fixed basis 
state. 

For simplicity, we support a fixed set of gates. This set can 
be extended in our implementation, or new gates can be 
defined in terms of built-in gates. For example, we define 
the swap operation as follows.

We can then state and prove properties about the 
semantics of the defined operations. For example, we can 
prove that the SWAP program swaps its arguments, as 
intended.

Example. Superdense coding is a protocol that allows a 
sender to transmit two classical bits, b1 and b2, to a 
receiver using a single quantum bit. The circuit and SQIRE 
program for superdense coding are shown below.

Although SQIRE was designed to be used as an 
intermediate representation, we can also prove properties 
about SQIRE programs directly, since these programs and 
their semantics are embedded in Coq. For example, we 
can prove that the result of evaluating the program 
superdense b1 b2 on an input state consisting of two 
qubits initialized to zero is the state ∣b1, b2⟩. We write this 
as follows.

In our development, we also verify the correctness of       
n-qubit GHZ state preparation, quantum teleportation, 
and the n-qubit Deutsch-Jozsa algorithm. 

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able 
to perform small computations before decoherence takes 
effect, compilers for quantum programs must apply 
sophisticated optimizations to reduce resource usage. 
These optimizations can be complicated to implement 
and are vulnerable to programmer error. It is thus 
important to verify that the implementations of these 
optimizations are correct. 

In general, we will be interested in proving that a 
transformation is semantics-preserving, meaning that the 
transformation does not change the behavior of the 
program. 

Example. The following optimization removes skip 
operations from a program.

To ensure that this transformation is semantics-
preserving, we prove the following lemma.

In our development, we also verify soundness of an 
optimization from a recent circuit optimizer [7] that 
removes unnecessary X gates from a unitary program. 

Verified Optimization

High-level Language
E.g. QWIRE, Quipper, Q#

General Purpose IR
E.g. SQIRE, Open QASM, Quil

Machine-specific IR

Hardware Instructions

Hardware Description
E.g. Gate set, connectivity 
constraints, error model
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