
Hoare meets Heisenberg:
A Lightweight Logic for Quantum Programs
Aarthi Sundaram1, Robert Rand2, Kartik Singhal2, and Brad Lackey1

1Microsoft Quantum, Redmond, WA
2University of Chicago, Chicago, IL

We show that Gottesman’s (1998) semantics for Clifford circuits based on
the Heisenberg representation gives rise to a lightweight Hoare-like logic for effi-
ciently characterizing a common subset of quantum programs. Our applications
include (i) certifying whether auxiliary qubits can be safely disposed of, (ii) de-
termining if a system is separable across a given bi-partition, (iii) checking the
transversality of a gate with respect to a given stabilizer code, and (iv) comput-
ing post-measurement states for computational basis measurements. Further,
this logic is extended to accommodate universal quantum computing by de-
riving Hoare triples for the T -gate, multiply-controlled unitaries such as the
Toffoli gate, and some gate injection circuits that use associated magic states.
A number of interesting results emerge from this logic, including a lower bound
on the number of T gates necessary to perform a multiply-controlled Z gate.

1 Introduction
Quantum programs are notoriously complex in both the traditional and computational
sense: They are hard to write correctly and extremely expensive to simulate. The same
applies to program logics for quantum programs: It can be hard to come up with an
assertion about a quantum program (typically an observable or a projector), and it is
doubly hard to prove that it holds upon execution of a program. Typically this will either
involve complex calculations or high-level reasoning. To address this problem, we propose
a logic that uses the stabilizer formalism for efficient reasoning about Clifford circuits. We
extend this system to handle universal quantum gate sets, both by explicitly adding the T
gate and by showing how to handle arbitrary unitary gates. We also expand the system to
handle measurement on stabilizer circuits and a restricted set of Clifford+T circuits. This
system is designed for efficient analysis: In particular, given a precondition and a Clifford
circuit, we can derive the most general postcondition in linear time. Given a non-Clifford
circuit, determining the postcondition will double in the worst case for each non-Clifford
gate in the circuit.

The starting point to understanding our system is the Heisenberg interpretation of
quantum mechanics. This interpretation treats quantum operators as functions on opera-
tors rather than on quantum states. For instance, given an arbitrary quantum state |ϕ⟩,
Aarthi Sundaram: aarthi.sundaram@microsoft.com
Robert Rand: rand@uchicago.edu
Kartik Singhal: ks@cs.uchicago.edu
Brad Lackey: brad.lackey@microsoft.com

1

https://quantum-journal.org/?s=Hoare%20meets%20Heisenberg:\newline%20A%20Lightweight%20Logic%20for%20Quantum%20Programs&reason=title-click
https://quantum-journal.org/?s=Hoare%20meets%20Heisenberg:\newline%20A%20Lightweight%20Logic%20for%20Quantum%20Programs&reason=title-click
https://orcid.org/0000-0002-4740-1886
https://orcid.org/0000-0001-6842-5505
https://orcid.org/0000-0003-1132-269X
https://orcid.org/0000-0002-3823-8757
mailto:aarthi.sundaram@microsoft.com
mailto:rand@uchicago.edu
mailto:ks@cs.uchicago.edu
mailto:brad.lackey@microsoft.com

the Hadamard operator H satisfies

HZ |ϕ⟩ = XH |ϕ⟩ . (1)

In other words, the operator H can be viewed as a function that takes Z to X and similarly
takes X to Z. Gottesman [14] used this representation to present the rules for how the
Clifford set (H, S and CNOT) operates on Pauli X and Z matrices. Hence, we can use
Hoare-style triple to describe the action of H on both the X and Z operators.

{X} H {Z} {Z} H {X} (2)

Note that it suffices to just specify how H acts on X and Z as we can derive the action of
H on Y by treating the operator Y as iXZ (since σy = iσxσz). More specifically,

HY |ϕ⟩ = H(iXZ) |ϕ⟩
= i(HX)Z |ψ⟩
= i(ZH)Z |ψ⟩
= iZ(HZ) |ψ⟩
= iZXH |ψ⟩
= −Y H |ψ⟩

Throughout this work, we develop a logic motivated by this interpretation of Pauli
matrices as predicates. Formally, the syntax of the logic, as found in Figure 4 and Figure 5,
is axiomatic with the semantics described above being a sound interpretation. For example,
we can represent the general form of this last deduction by the following deductive rule:

{X} U {A} {Z} U {B}
{Y} U {iAB}

Y

Here A and B are assumed to be Paulis, so the product of A and B is simply the third
Pauli, possibly negated or multiplied by i. This is indicative (and a special case) of the
kinds of rules we will use throughout the paper.

In Gottesman’s paper, the end goal was to fully describe quantum programs and prove
the Gottesman-Knill theorem, which shows that any Clifford circuit can be classically
simulated efficiently. Our goal is to take the rules in eq. (2) and use them as a starting
point to build a logical system for characterizing quantum programs (§2). Furthermore,
we move beyond Clifford circuits and expand the predicates to characterize some magic
states, the T gate, and other gates in the Clifford hierarchy (§7). A key feature of our
system is that the predicates correspond to unitary Hermitian operators: when restricted
to stabilizer quantum computing, these are (tensor products of) Pauli matrices, and for
universal quantum computing, they are general unitary Hermitian matrices. Notationally,
we use uppercase letters U, V, . . . to denote unitary gates or matrices and the boldface
U,V, . . . to denote the corresponding predicates.

The semantics of stabilizer predicates In our system, a judgment of the form
P(|ψ⟩) admits a straightforward interpretation: |ψ⟩ is a +1 eigenstate of P . As a re-
sult, {A} U {B} means that U maps a +1 eigenstate of A to a +1 eigenstate of B. This
closely mirrors the stabilizer formalism used for error correcting codes [13]. It works well as
long as we restrict to Clifford circuits and are fine with very coarse judgments in the face of

2

measurements. However, for more accurate judgments when measurements are performed
and to work with more general gates, we will associate P(|ψ⟩) with the fact that |ψ⟩ lies
in the image of the projection Π+

P := 1
2(I + P) i.e., 1

2(I + P) |ψ⟩ = |ψ⟩.
We use the tensor operand ⊗ to represent multi-qubit predicates. Using our first

interpretation, |ψ⟩ satisfies A ⊗ B if |ψ⟩ is a +1-eigenstate of A ⊗ B. Observe that this
does not restrict |ψ⟩ to be a product state |ϕ1⟩⊗|ϕ2⟩ such |ϕ1⟩ satisfies A and |ϕ2⟩ satisfies
B. For instance, A⊗B holds of |ψ′⟩ when |ψ′⟩ = |ϕ′

1⟩⊗ |ϕ′
2⟩ such that −A(|ϕ′

1⟩) (i.e., |ϕ′
1⟩

is a −1-eigenstate of A) and −B(|ϕ′
2⟩). Moreover, arbitrary superpositions of |ψ⟩ and |ψ′⟩

also satisfy A⊗B.
In our predicate language, conjunction and intersection coincide: if |ψ⟩ is a +1-eigen-

state of both A and B, then it satisfies A ∩B. Note that for this to hold A and B must
commute, because Pauli operators that do not commute will instead anticommute and
have no common eigenvectors. In our projection semantics, a |ψ⟩ that satisfies P ∩Q is
simultaneously in the image of the two projections Π+

P and Π+
Q.

Finally, we use disjoint unions to represent post-measurement states when the outcome
is probabilistic. In this case, (A ⊎B)(|ψ⟩) denotes that |ψ⟩ is either a +1-eigenstate A or
a +1-eigenstate of B, without making any claims to the likelihood of which case is true.
In the measurement context, it means that one outcome results in the system satisfying
A and the other outcome satisfies B. In our projection semantics, it implies that |ψ⟩ is
either in the image of Π+

A or in the image of Π+
B.

While our statements about intersection and union are focused on the stabilizer formal-
ism, and hence refer to Pauli types, they extend to commuting additive predicates as well.
For additive predicates, failing to commute does mean they must anticommute and hence
in complete generality the situation can be quite complex. In particular, the projection
semantics of additive predicates is a traditional quantum logic, or orthomodular lattice of
subspaces, for which the analogue of union (span of the two subspaces) does not distribute
with the intersection.

Applications Our syntax and derivation rules for Clifford circuits and stabilizer states
are methodically developed in §2. The full list of our rules are in Figures 4 and 5. The
most straightforward use of our system is in characterizing properties of Clifford circuits,
particularly entanglement and separability. For the textbook case of Deutsch’s algorithm,
we are easily able to verify three key properties: (i) the first qubit is |0⟩ whenever the
function is constant, (ii) the first qubit is |1⟩ whenever the function is balanced, and (iii)
that the two qubits are never entangled, and therefore the second can be safely discarded.
These are three common and broadly useful properties to check.

Ideally, our predicates would be unique: any A and B that have the same set of
eigenvectors should be equal. This would allow us to prove program equivalence, given
fully descriptive predicates for a program (see §2.6). While this uniqueness does not hold
by construction, we can obtain a canonical representation for our predicates that guarantees
this property. Inspired by the row echelon form of a matrix, we describe in §3 an efficient
algorithm to generate a canonical representation for intersections of predicates. This allows
us to use our logic to efficiently track whether a given sub-system is separable from the
rest of the system in §4. In §4.3, we generate and then disentangle a GHZ state 1√

2(|000⟩+
|111⟩) to show how the logic is capable of tracking both the creation and destruction of
entanglement.

A crucial method used by quantum circuits to extract or output classical information
is measurement (usually in the computational basis). It is challenging to tune our logic to
accommodate measurement in light of the fact that it requires managing the operation on

3

all the basis states, unlike the evolution of a single Pauli operator. However, measurement
on stabilizer states is well understood, and this allows us to construct a procedure to
generate a measurement outcome and post-measurement as discussed in §5. In particular,
when the measurement outcome is random, we use disjoint unions to capture the fact that
the system could be in one of several states, depending on the outcome. As a simple
example, applying a z-basis measurement on an X qubit to get a random 0 or 1 outcome
is represented as

{X} Meas {Z ⊎ −Z}

Using all the elements described above, in §6, we demonstrate how our logic can be
used to verify the working of a stabilizer error correcting code (the Steane code on 7
qubits [30]). Specifically, we (i) derive a predicate for a logical qubit in the Steane code;
(ii) verify that the encoding circuit constructs the appropriate logical qubit state; and (iii)
show the transversality of the H and S gates as well as the non-transversality of the T
gate for the Steane code.

Additive predicates and their applications All the ideas discussed up to this point
deal with the realm of stabilizer states and Clifford circuits, which are not universal for
quantum computing. For instance, while we can add the axiom {Z} T {Z} to our system,
the stabilizer formalism is incapable of expressing the action of the T gate on X. We
address this shortcoming by developing additive predicates in §7, which are expressed as
linear combinations of our basic predicates. This allows us to express the action of T on
X as {X} T

{
1√
2(X + Y)

}
.

Since the T -gate is not the only way to achieve universal quantum computation, we
produce a straightforward algorithm for adding new gates to the system (such as the Toffoli)
by fully deriving their corresponding rules. A particularly nice application has to do with
multiply-controlled Z gates, which have very succinct postconditions when applied to X
or Z qubits. In fact, comparing their derived rules to that of the T gate, we can easily
show that synthesizing an n-controlled Z-gate requires at least (2n− 2) T -gates.

In §8, we discuss how to determine the postcondition of a single-qubit computational
basis measurement given one- and two-qubit additive preconditions. Putting these pieces
together in §8.3, we derive rules for gate injection circuits that use associated magic states
to implement non-Clifford circuits. We focus on single-qubit unitaries that correspond to
a rotation about the Z axis, i.e., that rotate qubits in the X/Y-plane by some angle θ.

Applying the logic in practice. We conclude with a discussion on the complexity of
determining the most descriptive postcondition given a program and a precondition in §9.
Unsurprisingly, fully characterizing a circuit with high T -depth proves to be intractable in
the general case. However, proving interesting properties of circuits with a few T gates
is often quite possible. Moreover, Clifford circuits can be efficiently characterized to any
degree of precision, allowing us to flexibly analyze a broad range of quantum programs.
Note that efficiency here means that the procedure scales linearly with the number of gates
in the operation and polynomially in the size of the system.

We place our work in the context of related work in §10 and discuss possible future
applications and extensions to this system in §11.

4

2 Our Hoare-style Logic and its Semantics
Here we present the internal syntax of our predicates and several semantic interpretations.
We will extend this to more general predicates in §7 below. Our atomic predicates corre-
spond to the Pauli matrices and are denoted X,Y,Z. We denote basic operators (or gates)
by H, S, CNOT and later T .

2.1 A Simple Quantum Language
Our language is given by the following grammar:

g := H i | S i | CNOT i j | T i | Meas i | g; g

where the semicolon corresponds to sequencing. T and Meas are both significantly more
difficult to reason about than the other operators and will have their own sections devoted
to them. Note that we can express other common operators like X, CZ , T †, and CCX (or
TOFF) in terms of the operators above. We will introduce each of these in this and derive
their associated pre- and postconditions.

2.2 Atomic Predicates
Our core interpretation for X,Y and Z is that each of these predicates is inhabited by a
single qubit state, the +1-eigenstate of the Pauli operators σx, σy, and σz. The following
judgments hold using the standard quantum computing notation:

X(|+⟩) Y(|i⟩) Z(|0⟩)

We can also negate these operators to obtain their −1-eigenstates:

−X(|−⟩) −Y(|−i⟩) − Z(|1⟩)

Note that we can equally well read −X(|−⟩) as “|−⟩ is a +1-eigenstate of −X” or “|−⟩ is
a −1-eigenstate of X”. We prefer the former since it will generalize better to multiplication
by numbers other than −1 in subsequent sections.

Unlike X, Y, and Z, every single-qubit state is a +1 eigenvector of I:

∀ |ψ⟩ , I(|ψ⟩)

In this sense, I corresponds to the proposition “True”.
Note that all of our atomic predicates correspond to unitary and hermitian operators.

This ensures that they all have +1-eigenstates. In fact, throughout this paper, our predi-
cates will be unitary and hermitian and, with the exception of I (and I tensored with itself)
of trace 0. This guarantees that they have an equal number of +1 and −1 eigenstates.

2.3 Basic Hoare Triples and Sequencing
To define our basic Hoare triples, we turn to the characterization of H, S and CNOT by
Gottesman [14]:

Proposition 1. Given a unitary U : A → B in the Heisenberg interpretation, U takes
every eigenstate of A to an eigenstate of B with the same eigenvalue.

5

Proof. From eq. [1] in Gottesman [14], given a state |ψ⟩ and an operator U ,

UN |ψ⟩ = UNU †U |ψ⟩ .

In the Heisenberg interpretation, this can be denoted as U : N → UNU †. Suppose that
|ψ⟩ is an eigenstate of N with eigenvalue λ and let |ϕ⟩ denote the state after U acts on |ψ⟩.
Then,

λ |ϕ⟩ = U(λ |ψ⟩) = UN |ψ⟩ = UNU †U |ψ⟩ = (UNU †) |ϕ⟩ .

Hence, |ϕ⟩ is an eigenstate of the modified operator UNU † with eigenvalue λ.

Therefore, in our logic, {A} U {B} will mean that U takes a +1 eigenstate of A to a
+1 eigenstate of B.

As a result, our basic Hoare triples for H and S follow precisely from Gottesman (we
will postpone the introduction of CNOT until the next section):

{X} H {Z} {Z} H {X} {X} S {Y} {Z} S {Z}

So, for instance, H1 takes |+⟩ to |0⟩.
Note that every qubit is an +1-eigenstate of I, and similarly, every quantum state is an

+1-eigenstate of Ik (our notation for I⊗k where k is the number of qubits in the system)
so we have the following rule for any single qubit unitary U :

{I} U {I}
I

We adopt the standard sequencing rule from Hoare logic:

{A} p1 {B} {B} p2 {C}
{A} p1; p2 {C}

seq
(3)

For instance, here is our derivation of the postcondition for applying Z = S;S to a
state satisfying Z:

{Z} S {Z} {Z} S {Z}
{Z} S;S {Z}

seq

Since S has Y as a postcondition given the precondition X and our basic Hoare judg-
ments only have X and Z preconditions, we will need to introduce rules for coefficients
and multiplication that generalize the Y rule presented in the introduction:

{A} p {B}
{cA} p {cB}

scale
{A} p {B} {C} p {D}

{AC} p {BD}
mul

(4)

In scale, c can be any complex number, although in any derivation that stays within the
Clifford group, non-vacuous predicates will only use c ∈ {−1, i,−i}. We should note that
there is no matrix multiplication happening when we apply the mul rule: There are only
16 possible combinations of two Paulis, each of which produces a Pauli, so we can efficiently
simplify these symbolically. The same is true for c ∈ {1,−1, i,−i}. We should also note

1For readability, we use U as shorthand for U applied to qubit 1 when U is a one qubit unitary, and V
as shorthand for V 1 2 when V is a two-qubit unitary, particularly when these are applied to one- and
two-qubit states, respectively. We discuss applying unitaries to larger states in §2.4.

6

that many intermediate deductions will prove vacuous: For instance, we can easily derive
that {XZ} H {ZX} which simplifies to {−iY} H {iY}. In itself, this is not useful, as
neither −iY nor iY have +1-eigenvectors. However, by applying the scale rule with c = i,
we get {Y} H {−Y}, which is certainly meaningful.

We can now derive a postcondition for Z given the precondition X:

{X} S {Y}

{X} S {Y} {Z} S {Z}
{XZ} S {YZ}
{Y} S {iYZ}

scale

mul

{X} S;S {−X}
seq

In this deduction, XZ is simply a notation for −iY included for readability. Likewise,
YZ is simply iX.

Defining X as H;Z;H and Y as S;X;Z;S, we can similarly verify that {X} X {X},
{Z} X {−Z}, {X} Y {−X}, and {Z} Y {−Z}.

2.4 Predicates over multi-qubit systems
In order to do anything interesting, we’re going to need to consider multi-qubit systems.
We can write a predicate P1 ⊗P2 ⊗ · · · ⊗Pn for Pauli predicates Pi to characterize an n
qubit system following our semantics. We use T[i] to refer to Pi from that tensor product
and U i to apply U to the ith qubit in a quantum state. We can therefore introduce the
following rule for applying a single-qubit operator to a multi-qubit state:

T[i] = A U : A→ B
{T} U i {T[i 7→ B]}

⊗1 (5)

Here T{i 7→ B} replaces the predicate for the ith qubit in the tensor product with B.
We can now introduce the Hoare triples corresponding to Gottesman’s rules for CNOT :

{X⊗ I} CNOT {X⊗X} {I⊗X} CNOT {I⊗X}

{Z⊗ I} CNOT {Z⊗ I} {I⊗ Z} CNOT {Z⊗ Z}

To apply CNOT to multi-qubit states, we’ll need a new rule:

T[i] = A T[j] = B {A⊗B} U {C⊗D}
{T} U i j {T[i 7→ C; j 7→ D]}

⊗2 (6)

Note that we’ll often need to use this in conjunction with the mul rule, where multi-
plication distributes over addition. Consider this simple derivation:

(Z⊗Y⊗X)[1] = Z (Z⊗Y⊗X)[3] = X
{Z⊗ I} CNOT {Z⊗ I} {I⊗X} CNOT {I⊗X}

{Z⊗X} CNOT {Z⊗X}
mul

{Z⊗Y⊗X} CNOT 1 3 {Z⊗Y⊗X}
⊗2

Note that multiplication distributes componentwise over tensors. Note that sometimes
we will obtain a coefficient of −1 when multiplying two terms; we move these to the outside
of the tensor so that X⊗−Z becomes −(X⊗Z) (the parentheses are generally not needed
as a result).

7

We note that the identity rule also applies to the CNOT gate:

{I⊗ I} CNOT {I⊗ I}
I2

On this basis, it is easy to show that Ik is a universal predicate for all quantum programs,
where Ik corresponds to I⊗k and k is greater than or equal to the number of qubits in our
program.

2.5 Intersections and Consequence Rules
If we want to fully describe an operator’s behavior, we need to add conjunctions; or, from
the perspective of describing a set of eigenstates, intersections. The derivation rule for
intersection is exactly what we would expect:

{A} p {B} {C} p {D}
{A ∩C} p {B ∩D}

∩
(7)

Of course, if {A} p {B ∩C} is a valid triple, then {A} p {B} should as well –
we’re simply weakening the postcondition. Similarly, we should be able to strengthen the
precondition to A ∩ E, even if this winds up being the empty set. This brings us to the
rule of consequence:

A′ ⇒ A {A} g {B} B⇛ B′{
A′} g

{
B′} cons

Note that ⇒ is not general implication: In order to make the logic simple and syntax
directed, we do not want to allow for arbitrary linear algebraic or even logical rewriting
in the predicates. Instead, we have a small number of implication rules, mostly related
to intersections (the remaining rules will appear with their associated connectives and are
summarized in fig. 5):

A ∩B⇒ A
A ∩B⇒ B ∩A
A ∩ (B ∩C)⇔ (A ∩B) ∩C

One linear algebraic rule is important and will be used repeatedly in our normalization
section (§3), however. Consider the following derivation for CNOT :

{Z⊗ I} CNOT {Z⊗ I} {I⊗ Z} CNOT {Z⊗ Z}
{Z⊗ I ∩ I⊗ Z} CNOT {Z⊗ I ∩ Z⊗ Z}

∩

This should become quite easy to interpret: Z ⊗ I characterizes states where the first
qubit is |0⟩ and I⊗Z does the same for the second qubit. Hence, their intersection describes
exclusively the state |00⟩. However, while we can check mathematically that Z⊗ I∩Z⊗Z
describes exactly the same state, it is rather less obvious from looking at it. Hence, we
introduce the rule

A ∩B⇔ A ∩AB

where multiplication distributes component-wise over tensors.

8

The argument that this rule is sound is slightly subtle: if |ψ⟩ : A ∩B then in our
semantics |ψ⟩ is a +1-eigenstate of both (multi-qubit) Pauli operators A and B. But
then |ψ⟩ is also a +1-eigenstate of AB. The converse is also true (as A2 = I), and so
semantically, A ∩B and A ∩AB refer to the same set of states.

Hence we get
Z⊗ I ∩ Z⊗ Z⇒ Z⊗ I ∩ ZZ⊗ ZI⇝ I⊗ Z

where ⇝ denotes simplification of predicates. Hence we can derive the desired triple

{Z⊗ I ∩ I⊗ Z} CNOT {Z⊗ I ∩ I⊗ Z}

2.6 Fully Descriptive Predicates
Finally, we will often want a complete description of a given gate or circuit C. As in [14],
any Pauli operator can be generated as the tensor product of weight one Pauli operators,
so instead of making 2n judgements to characterize an n-qubit Clifford circuit C it suffices
to make the 2n judgements

{I⊗ · · · ⊗X⊗ · · · ⊗ I} C
{
Pj
}

and {I⊗ · · · ⊗ Z⊗ · · · ⊗ I} C
{
Qj
}

for each position j.
To succinctly give this characterization, it is useful to add new syntax and corresponding

deductive rule (note that this isn’t strictly part of the Hoare logic):

∀i, {Pi} p {Qi}
{{P1 ∥ P2 ∥ · · · ∥ Pn}} p {{Q1 ∥ Q2 ∥ · · · ∥ Qn}}

∥

This gives us the following information-theoretically complete description of CNOT :

{{X⊗ I ∥ I⊗X ∥ Z⊗ I ∥ I⊗ Z}} CNOT {{X⊗X ∥ I⊗X ∥ Z⊗ I ∥ Z⊗ Z}}

2.7 Example: Deutsch’s Algorithm
A complete list of our rules and grammar for Pauli predicates is given in Figures 4 and 5.
Here, we show an example of how we can apply these rules to make non-trivial judgments
about quantum programs.

Many quantum circuits introduce ancillary qubits that perform some classical compu-
tation and are then discarded in a basis state. Several efforts have been made to verify
this behavior: The Quipper [15] and Q# [32] languages allow us to assert that ancillae are
separable and can be safely discarded, while Qwire allows us to manually verify this [26].
More recently, Silq [3] allows us to define “qfree” functions that never put qubits into a
superposition. We can use our logic to avoid this restriction and automatically guarantee
ancilla correctness by showing that the ancillae are discarded as they satisfy the predicate
Z and, more specifically, are separable from the rest of the system.

A simple example to demonstrate this ability to safely discard auxiliary qubits is
Deutsch’s algorithm [9]. Given a function f : {0, 1} → {0, 1}, the algorithm uses ora-
cle access to f and a single auxiliary qubit to determine if f has a constant value or is
balanced.

We want to show that the qubit y is never entangled with qubit x despite the appli-
cation of the oracle Uf : |x⟩ |y⟩ → |x⟩ |y ⊕ f(x)⟩. In this case, it would be safe to discard
qubit y just after the dotted line in Figure 1 (i.e., even before measurement destroys any
hypothetical entanglement).

9

x |0⟩ b

y |0⟩ |0⟩

H

X H
Uf

H meas

H

Figure 1: Deutsch’s algorithm to check if f : {0, 1} → {0, 1} is constant or balanced

Before analyzing the circuit, consider the possible behaviors for f . Acting on a single
bit, one can conclude that f(x) ∈ {0, 1, x, (1−x)}. It is easy to derive the oracle application
by a case-by-case analysis:

Uf 1 2 =

I 2 if f(x) = 0
X 2 if f(x) = 1
CNOT 1 2 if f(x) = x

X 1; CNOT 1 2; X 1 if f(x) = 1− x.

(8)

Clearly, the first two cases are not entangling gates. The last case is a 0-controlled
CNOT which is equivalent to the CNOT gate for our purposes. Hence, we analyze the
circuit for the case where Uf 1 2 ≡ CNOT 1 2. The precondition for this circuit is two qubits
initialized in the computational basis, or equivalently Z ⊗ I ∩ I ⊗ Z. Instead of building
a full proof tree for deutsch, we’ll use the standard approach for Hoare logic, in which we
write an annotated program with the intermediate predicates in between the commands.
For convenience, we’ll do our derivations in parallel, rather than combining them with the
∩ rule at the end:
deutsch :=

{I ⊗ Z ∩ Z ⊗ I}
X 2; (* y is set to 1 *)
{-I ⊗ Z ∩ Z ⊗ I}
H 1;
{-I ⊗ Z ∩ X ⊗ I}
H 2;
{-I ⊗ X ∩ X ⊗ I}
Uf 1 2; (* Uf = CNOT *)
{-I ⊗ X ∩ X ⊗ X}
H 1;
{-I ⊗ X ∩ Z ⊗ X} ⇒ (∩-mul)
{I ⊗ -X ∩ -Z ⊗ I}

The last line is obtained through the ∩-mul rule and the distributivity of negation.
This is precisely what Deutsch’s algorithm is supposed to produce – two separable qubits
(implied by A⊗ I, see §4), the first of which is an eigenstate of −Z, corresponding to a |1⟩
qubit. Note that we could return the second qubit to Z by applying a Hadamard and an
X. However, as we statically verified that the ancillary y qubit is unentangled with x, we
may freely discard it and optimize away the final H 2; X 2.

This derivation could also similarly be extended to the more generic Deutsch-Jozsa
algorithm [10]. This, of course, would require extending both the language and logic to
deal with recursion. We leave this challenge for future work.

3 Normal Forms
Our intersection predicates have the property that there exists a canonical form with
which to describe them. This allows us to verify the equality of intersection predicates by

10

verifying the equality of their canonical forms. The canonical form we use is inspired by
the row echelon form of a matrix, in which every row has its first nonzero term before any
subsequent row. We translate this into I being 0 and further impose that X ≺ Y ≺ Z ≺ I so
I⊗X precedes I⊗Z. Further, an intersection predicate involving commuting, independent
terms can be viewed as a matrix with each term corresponding to a row and each column
corresponding to a qubit. Then, in the canonical form, any column contains at most one
X, and any column without an X has at most one Z. The unique X or Z in each column
will be called the X or Z pivot.

The implication rule for intersection predicates, A ∩B ⇔ A ∩AB, will be useful to
reduce the predicates to their canonical forms. Given an n-qubit intersection predicate
with m independent terms A(1) ∩ . . . ∩A(m), do the following:

1. Let P be an ordered set of indices, initialized to ∅.

2. For each qubit i = 1 . . . n:

• For the first term j /∈ P such that A(j)[i] ∈ {X,Y}
– Update P ← P ∪ {j}.
– For terms k ̸= j, if A(k)[i] ∈ {X,Y}, rewrite A(k) ← A(j)A(k).

• If there is no term with X or Y on qubit i , for the first term j /∈ P such that
A(j)[i] = Z:

– Update P ← P ∪ {j}.
– For terms k ̸= j, if A(k)[i] = Z, rewrite A(k) ← A(j)A(k).

• If no term contains X, Y, or Z on qubit i proceed.

3. We order the terms as follows:

• For the terms in P, place them in the order in which they appear in P.
• Order the remaining terms lexicographically.

Notice that each term can be added to P at most once, and this, along with the ordering
of terms, makes the canonical form unique. Further, by viewing the ith term in P to
be the X−,Y− or Z−pivot for qubit i, this procedure is functionally equivalent to row
echelonization for matrices and can be computed using O(n3) operations.

Note that this normalization process is functionally similar to the reduction of a sta-
bilizer code to a standard form; see, for example, [22, §10.5.7]. Given the standard form
of a stabilizer code, there are efficient methods for generating its encoding circuit using
only Clifford gates [7]. In particular, if we are given a state that can be described with a
complete Pauli predicate, we know that we can efficiently construct a Clifford circuit from
the normal form of the predicate that prepares the given state. We capture this in the
following formal statement.

Proposition 2. Let |ψ⟩ be an n-qubit state. Then P(1) ∩ · · · ∩P(n)(|ψ⟩) if and only if |ψ⟩
can be prepared from |0 . . . 0⟩ with a Clifford circuit. That is, for any set of commuting Pauli
operators P(1), . . . , P(n) there exists a Clifford operator C : Zj → P(j) for each j = 1, . . . , n.

Example 3. Consider the following predicate:

X⊗X⊗ I ∩ Z⊗ Z⊗ I ∩ Z⊗ Z⊗ Z.

Conveniently, the first term contains an X on qubit 1. However, no subsequent terms have
an X on this qubit, so we move on to qubit 2.

11

For the second qubit, no X’s remain in pivot terms, so we take the Z in the second
term, Z⊗ Z⊗ I. The third term is now rewritten as:

(Z⊗ Z⊗ Z)(Z⊗ Z⊗ I)
= ZZ⊗ ZZ⊗ ZI
= I⊗ I⊗ Z.

For the last qubit, there is only one term with a X or Z in the third position, so we are
done.

The entire procedure yields the normal form:

X⊗X⊗ I ∩ Z⊗ Z⊗ I ∩ I⊗ I⊗ Z.

An essential property of the normal form is that it is oblivious to the original ordering
of the terms. For instance, in Example 3, if we had first swapped the 2nd and 3rd terms
then Z⊗Z⊗Z would have been the pivot for the second qubit and we would replace the 3rd

term with I⊗ I⊗Z. We would then use the third term as our pivot, replacing the second
term (Z⊗Z⊗Z) with Z⊗Z⊗I. The entire procedure yields X⊗X⊗I∩Z⊗Z⊗I∩I⊗I⊗Z
just as before.

Since all of our normalization operations are justified by the one implication rule, as-
sociativity, and commutativity rules, the following simplification rule is admissible:

{A} g {B}
{A} g {norm(B)}

Norm

where norm is our normalization procedure. This is the rule we will apply in practice
before making separability judgments.

4 Separability
In this section, we present the first application of our Hoare style logic—the ability to make
judgments on whether a given sub-system is separable from the remainder of the system.
We start with determining whether a single qubit is separable before moving to multi-qubit
sub-systems.

4.1 Single qubit separability
Following the core semantics that a predicate refers to the +1-eigenstate of its semantic
operator, we first prove a statement about the separable eigenstates of some operators.
For notational simplicity, we state the following proposition with a focus on the first qubit;
however, the result holds for any operator of the form Ik−1 ⊗ U ⊗ In−k

Proposition 4. For any 2× 2 unitary, Hermitian matrix U , the eigenstates of U ⊗ In−1

are all vectors of the form |u⟩ ⊗ |ψ⟩ where |u⟩ is an eigenstate of U and |ψ⟩ ∈ C2n−1 is an
arbitrary state.

Proof. Let |ϕ⟩ be the λ-eigenstate and
∣∣∣ϕ⊥

〉
be the (−λ)-eigenstate of U where λ ∈ {1,−1}.

Note that {|ϕ⟩ ,
∣∣∣ϕ⊥

〉
} forms a single-qubit basis.

First, consider states of the form |γ⟩ = |u⟩⊗|ψ⟩ where |u⟩ ∈ {|ϕ⟩ ,
∣∣∣ϕ⊥

〉
} and |ψ⟩ ∈ C2n−1 .

Clearly,

(U ⊗ In−1) |γ⟩ = (U ⊗ In−1)(|u⟩ ⊗ |ψ⟩) = (U |u⟩)⊗ |ψ⟩ = λu |u⟩ ⊗ |ψ⟩ .

12

Hence, every state of the form of |γ⟩ is an eigenstate of U ⊗ In−1. Additionally, note that
by similar reasoning, for every separable state |γ⟩ = |v⟩ ⊗ |ψ⟩, where |v⟩ /∈ {|ϕ⟩ ,

∣∣∣ϕ⊥
〉
}, is

not an eigenstate of U ⊗ In−1.
Now we show that any state not in this separable form cannot be an eigenstate of

U ⊗ In−1. By way of contradiction assume that |δ⟩ is an eigenstate of U ⊗ In−1 with
(U ⊗ In−1) |δ⟩ = µ |δ⟩. Expand

|δ⟩ = α |ϕ⟩ ⊗ |ψ1⟩+ β
∣∣∣ϕ⊥

〉
⊗ |ψ2⟩

where |ψ1⟩ , |ψ2⟩ ∈ C2n−1 . Then we compute

(U ⊗ In−1) |δ⟩ = α(U |ϕ⟩)⊗ |ψ1⟩+ β(U
∣∣∣ϕ⊥

〉
)⊗ |ψ2⟩

= λα |ϕ⟩ ⊗ |ψ1⟩ − λβ
∣∣∣ϕ⊥

〉
⊗ |ψ2⟩

= µα |ϕ⟩ ⊗ |ψ1⟩+ µβ
∣∣∣ϕ⊥

〉
⊗ |ψ2⟩

where we have used that |ϕ⟩ and
∣∣∣ϕ⊥

〉
are the +λ and −λ eigenvalues of U respectively.

As the components of the expansion are orthogonal to each other, µ must satisfy:

µα = λα and µβ = −λβ.

Since U⊗In−1 is unitary, λ ̸= 0 and we either have (i) α = 0, µ = −λ, and |δ⟩ =
∣∣∣ϕ⊥

〉
⊗|ψ2⟩

or (ii) β = 0, µ = +λ, and |δ⟩ = |ϕ⟩ ⊗ |ψ1⟩. In either case, |δ⟩ has a separable form as
claimed.

As every Pauli matrix is both Hermitian and unitary, combining Propositions 1 and 4,
we immediately obtain the following corollary:

Corollary 5. Every term of the form Ii−1 ⊗ U ⊗ In−i is separable, for any U ∈
{±X,±Y,±Z}. That is, the ith factor satisfies the predicate U and is not entangled with
the rest of the system.

Following Gottesman’s notation, let Uk be the n-qubit predicate where the kth factor
satisfies the single-qubit predicate U and is separable from the rest of the system. For
example, the predicate X1 ≡ X⊗I describes the set of two separable qubits where the first
qubit is in the X eigenstate2. The two-qubit product state |0⟩⊗|+⟩ satisfies the intersection
predicate Z1 ∩X2 to signify that each qubit is separable from the other. Corollary 5 then
justifies the following separability-based simplification rules:

Ik−1 ⊗B⊗ In−k ⇔ Bk

Since A being separable in a larger system B implies that the rest of B is separable
from A, we can add the following rules for distributing separability judgments across
intersections:

If T[k] ∈ {B, I}, Bk ∩T⇔ Bk ∩T[n]\{k}

Using these rules, we can re-write X1 ∩ (X⊗ Z⊗ Z) as X1 ∩ (Z⊗ Z)2,3.

2For precision, we should say X1∈[2] to indicate the size of the system, but this will always be clear from
the context.

13

4.2 Multi-qubit separability
While Corollary 5 can be used to identify if a single qubit is separable from the rest of
the system, we would also like to make judgments about a multi-qubit subsystem S ⊂
{1, . . . , n} being separable from {1, . . . , n} \ S. Generalizing Proposition 4 will help us
in this regard. However, we only generalize it for the case when the unitaries are Pauli
matrices (rather than generic Hermitian matrices). The following fact about Pauli matrices
adapted from Nielsen and Chuang [22, Prop. 10.5] by setting n← k, k ← 0, will be useful
for the proof.

Fact 6. For k-qubit Pauli matrices V ∈ {±I,±X,±Y,±Z}k such that V ̸= Ik, the
eigenvalue λ ∈ {−1, 1} has an eigenspace of dimension 2k−1. For k independent, commuting
k-qubit Pauli matrices U(1), . . . U(k), the joint eigenspace for an eigenvalue tuple (λ1, . . . , λk)
has dimension 1.

This fact can be intuitively argued from the observation that each Pauli matrix divides
the total 2k-dimensional Hilbert space into two sub-spaces of the same dimension, each
corresponding to the +1 or −1 eigenvalues. The k-tuple then identifies a 1-dimensional
subspace at the intersection of the corresponding eigenspaces for U(1), . . . , U(k).

Fact 6 requires the k-qubit Pauli matrices to be independent and pairwise commuting.
It is straightforward to check independence by ensuring that multiplying any combination
of the k matrices together does not yield the Ik term. Pairwise commutativity can also be
directly determined using the following fact, which follows immediately from the fact that
distinct Pauli matrices from {X,Y, Z} anticommute.

Fact 7. Given A = A1⊗ · · ·⊗Ak and B = B1⊗ · · ·⊗Bk, where the Ais and Bis are Pauli
matrices, A and B will commute precisely when there is an even number of positions where
Ai and Bi are both from {X,Y, Z} but Ai ̸= Bi.

We can now state the conditions under which a set of Pauli operators could correspond
to a separable sub-system.

Proposition 8. For independent, commutative, non-identity k-qubit matrices U(1), . . . , U(k)
∈ {±I,±X,±Y,±Z}k such that U(i) ∩ U(j) ≠ ∅ for all i ≠ j, the eigenstate of (In−k ⊗
U(1)) ∩ . . . ∩ (In−k ⊗ U(k)) are all vectors of the form |u⟩ ⊗ |Ψ⟩ where |Ψ⟩ is an eigenstate
of U(1), . . . , U(k).

Proof. First, it is clear that any state of the form |u⟩ ⊗ |Ψ⟩ where |Ψ⟩ is an eigenstate of
U(1), . . . , U(k) is an eigenstate of In−k ⊗ U(1), . . . , I

n−k ⊗ U(k). This implies that it is also
an eigenstate of (In−k ⊗ U(1)) ∩ . . . ∩ (In−k ⊗ U(k)).

To prove the inverse direction, assume by way of contradiction that there exists an
entangled n-qubit state |δ⟩ that is an eigenstate of (I⊗U(i) with eigenvalue λi ∈ {−1, 1} for
each i ∈ {1, . . . , k}. Let the n-qubit state |δ⟩ be written in terms of its Schmidt (singular
value) decomposition across the (n− k, k) qubit bipartition as

|δ⟩ =
K∑
j=1

αj |ϕj⟩ ⊗ |γj⟩

14

where {|ϕi⟩}i and {|γi⟩}i are orthonormal vectors in each of their respective subsystems.

∀i ∈ {1, . . . , k} (I ⊗ U(i)) |δ⟩ =
∑
j

αj(I |ϕj⟩)⊗ (U(i) |γj⟩)

= λi
∑
j

αj |ϕj⟩ ⊗ |γj⟩

=
∑
j

αj |ϕj⟩ ⊗ (λi |γj⟩)

⇒ ∀i, j, U(i) |γj⟩ = λi |γj⟩ .
⇒ ∀i, j, λiU(i) |γj⟩ = |γj⟩ Since, λi ∈ {−1, 1}. (9)

As {|γi⟩}i forms a set of orthonormal vectors, the span of these vectors is contained in the
eigenspace for the eigenvalue tuple (+1,+1, . . . ,+1) corresponding to λ1U(1), . . . , λkU(k)
respectively. Additionally, when U(i) is a k-qubit Pauli matrix, λiU(i) is also in {±I,±X,±Y,
±Z}k. Then, from Fact 6, the joint eigenspace for the all-1s tuple has dimension 1.
Specifically, there exists only a single |γ⟩ that satisfies Equation (9). Hence, K = 1
contradicting the assumption that |δ⟩ is entangled across the (n−k, k) qubit bi-partition.

Extending the Ui notation to the multi-qubit setting where K ⊂ {1, . . . , n} and 0 <
|K| < n, let (U)K be the predicate such that qubits inK are separable from the {1, . . . , n}\
K sub-system. Formally, we define UK :=

(
∩|K|
j=1U(j)

)
K

where each U(j) is a non-trivial
|K|-qubit non-identity Pauli string.

For example, consider a 2-qubit predicate (X ⊗X ∩ Z ⊗ Z) whose joint eigenspace is
spanned by the two maximally entangled Bell states {

∣∣Φ+〉 , |Ψ−⟩}. In an n-qubit state sat-
isfying this predicate on the first and third qubits, these qubits being maximally entangled
are disjoint from the rest of the system, and hence, they satisfy the predicate

(X⊗X ∩ Z⊗ Z)1,3 = (X⊗ I⊗X⊗ In−3) ∩ (Z⊗ I⊗ Z⊗ In−3).

If the second and fourth qubits are similarly entangled, the system satisfies the predicate
(X⊗X∩Z⊗Z)1,3 ∩ (X⊗X∩Z⊗Z)2,4. This idea to gather the nontrivial factors within
a subsystem is not unique to our work and has been previously employed by Honda [17]
to determine the entangled components in his static analysis framework.

Combining this representation with Propositions 1 and 8, we obtain the following corol-
lary:

Corollary 9. Let K ⊂ {1, . . . , n} with |K| = k and K := {1, . . . , n}\K. Every intersection
predicate that contains the term ⋂k

j=1

(
U(j) ⊗ In−k

)
where each of the U(j)s acts on K, is

pair-wise commuting and independent as a sub-term is separable across the bi-partition
(K,K). That is, the factors in K are separable from the K subsystem.

Given a canonical n-qubit intersection predicate with m independent terms A(1)∩ . . .∩
A(m), finding if a subsystem of qubits K ⊂ {1, . . . , n} with |K| = k < m, is separable
from the remaining system can be determined in a straightforward way. We first verify
that every qubit in K has a pivot; otherwise, some qubit in K has I in all terms, and we
can conclude that K is not separable from the remaining system. If every qubit in K has
a pivot, we run the following procedure:

• Let A(j1), . . . ,A(jk) be the k terms which have the pivots for qubits in K.

15

• For each i = 2 . . . k, check that A(ji) commutes with A(j1) using Fact 7.3

• For each i = 1 . . . k, check that the term A(ji) has an I for every qubit ℓ ∈ K.

Corollary 9 justifies our multi-qubit separability rules when S = {j1, . . . , jk} ⊂ [n]

B ∩T(1) ∩ . . . ∩T(k) ⇔ BS ∩
(
C(1) ∩ . . . ∩C(k)

)
S
,

where ∀j∈[k] T(j)[S] = C(j)∀j∈[k] T(j)[S] = In−kB[S] = Ik

Example 10. Continuing from Example 3, consider the predicate

X⊗X⊗ I ∩ Z⊗ Z⊗ I ∩ I⊗ I⊗ Z.

As (X⊗X) and (Z⊗Z) are two independent and commuting operators, the first two terms
with I on the third qubit ensure that we can apply Corollary 9 to determine that the first
two qubits are separable from the third. We can write this as:

(X⊗X ∩ Z⊗ Z)1,2 ∩ Z3.

4.3 Application: GHZ state, Entanglement Creation and Disentanglement
To demonstrate how we can track the possibly entangling and disentangling properties of
the CNOT gate, we can look at the example of creating the GHZ state 1√

2(|000⟩+ |111⟩)
starting from |000⟩ and then disentangling it. A similar example was considered by Honda
[17] to demonstrate how his system can track when CNOT displays either its entangling
or disentangling behavior. One crucial difference is that Honda uses the denotational
semantics of density matrices which, in practice, would scale poorly with the size of the
program being validated. Our approach is closer to that of Perdrix [24, 23] in terms of
design and scalability but capable of showing separability where the prior systems could
not.

We will consider the following GHZ program acting on the initial state Z1 ∩ Z2 ∩ Z3.
We first follow the derivation for Z1:

Definition GHZ :=
{Z1} ⇒
{Z ⊗ I ⊗ I}
H 1;
{X ⊗ I ⊗ I}
CNOT 1 2;
{X ⊗ X ⊗ I}
CNOT 2 3
{X ⊗ X ⊗ X}

Repeating the derivation for Z2 and Z3, we obtain:

{Z2} GHZ {Z⊗ Z⊗ I}
{Z3} GHZ {I⊗ Z⊗ Z}

If we now apply CNOT 3 1, we get the following specifications:

{Z1} GHZ {X⊗X⊗X} CNOT 3 1 {I⊗X⊗X}
{Z2} GHZ {Z⊗ Z⊗ I} CNOT 3 1 {Z⊗ Z⊗ Z}
{Z3} GHZ {I⊗ Z⊗ Z} CNOT 3 1 {I⊗ Z⊗ Z}

3This ensures that in all terms where the qubits in K are pivots, the terms have an I for all qubits in K.

16

If we want to analyze the output of this program on Z1 ∩ Z2 ∩ Z3, we can apply the
following normalization steps (the first and second row serving as the first and second
pivots):

{I⊗X⊗X ∩ Z⊗ Z⊗ Z ∩ I⊗ Z⊗ Z} ⇒
{I⊗X⊗X ∩ Z⊗ Z⊗ Z ∩ IZ⊗ ZZ⊗ ZZ} ⇝
{I⊗X⊗X ∩ Z⊗ Z⊗ Z ∩ Z⊗ I⊗ I}.

Recognizing that the first qubit can now be separated from the other two, we obtain
Z1 ∩ (X⊗X ∩ Z⊗ Z)2,3, that is, a Z qubit and a Bell pair.

Returning to the unnormalized program, if we finally apply CNOT 3 2, we get

{Z1} GHZ; CNOT 3 1; CNOT 3 2 {I⊗ I⊗X}
{Z2} GHZ; CNOT 3 1; CNOT 3 2 {Z⊗ Z⊗ I}
{Z3} GHZ; CNOT 3 1; CNOT 3 2 {I⊗ Z⊗ I}

to which we can apply the intersection rule and single-qubit separability rules to obtain

{Z1 ∩ Z2 ∩ Z3} GHZ; CNOT 3 1; CNOT 3 2 {Z1 ∩ Z2 ∩X3}

showing that the whole procedure moves the X generated by the initial Hadamard gate to
the third position.

5 Measurement
It is challenging to turn Gottesman’s semantics for measurement into an efficient deductive
system because it looks at its operation on all the basis states rather than simply the
evolution of a single Pauli operator. Namely, it adds significant computational complexity,
while our prior deductive rules were linear in the number of qubits. Nonetheless, our
normalization in §3 parallels that in the stabilizer formalism, and the action of measurement
on stabilizer groups is well-understood [14]. This produces a method for inferring the
postconditions for measurement that is quadratic in the number of qubits in the worst
case [1].

5.1 Union predicates
Before discussing how we check measurement, it helps to consider how we can represent
post-measurement states. Unlike unitary gate application, which is deterministic, implying
that each input predicate has a specified output predicate, not all measurements have
deterministic outcomes. While we do not want to use our logic system to verify the
probabilities of measurement outcomes, it would be useful to be able to compute the
possible post-measurement states for the system. With this, we could still track how the
system evolves with subsequent operations depending on the measurement results.

We use the union connective, A ⊎ B, to denote that the system either satisfies the
predicate A or predicate B. We show how to use this in the context of measurement with
this simple example.

Example 11 (Measuring |+⟩). Consider the single qubit in the |+⟩ state on which a
computational basis measurement is performed. The outcome has equal probability to be 0
or 1 which we cast as qubits in states |0⟩ : Z and |1⟩ : −Z respectively. We represent this
in our logic system as

{X} Meas {Z ⊎ −Z}

17

Applying a gate to a union predicate distributes across the union, and each term in the
union evolves separately. This gives the following rule for unions:

{A} g
{
A′} {B} g

{
B′}

{A ⊎B} g
{
A′ ⊎B′} ⊎

As with intersections, the ordering of the terms does not matter, with commutativity
and associativity holding for unions as well, leading to the following implications:

A⇒ A ⊎B
A ⊎B⇒ B ⊎A
A ⊎ (B ⊎C)⇒ (A ⊎B) ⊎C

5.2 Predicates for post-measurement states
For ease of exposition, we will assume that we are performing a Z-basis measurement on
the jth qubit of an n qubit system. In §3 we introduced a normalization procedure for
intersection predicates. There, we constructed the normal form by examining each qubit
in turn i = 1, . . . , n, and looked for an intersection term whose ith factor is X, Y, or Z. As
there, let us write A(1) ∩ · · · ∩A(m) for the pre-measurement predicate. Now however, we
begin by searching for an i, such that its jth factor A(i)[j] ∈ {X,Y,Z}.

1. If there exists an i such that A(i)[j] = X or A(i)[j] = Y, then the measurement
outcome is uniformly random:

(a) Replace A(k) ← A(i)A(k) for all k ̸= i with A(k)[j] ∈ {X,Y}.
(b) Let U′ = A(1) ∩ · · · ∩A(i−1) ∩A(i+1) ∩ · · · ∩A(m).

(c) The post-measurement state satisfies the predicate (Zj ∩U′) ⊎ (−Zj ∩U′).
(d) Normalize each branch of the union separately to get the normalized post-

measurement predicate.

2. If no i has A(i)[j] ∈ {X,Y} find an i such that A(i)[j] = Z. When this is the case,
the outcome is deterministic as some combination of the intersection terms is Zj or
−Zj [1]:4

(a) Using the implication that A ∩ B ⇔ A ∩AB, obtain ±Zj as an intersection
term (our normalization procedure ensures this can be done efficiently). Let the
rest of the intersection be U.

(b) Normalize the term (±Zj ∩ U) to obtain the normalized post-measurement
predicate.

3. If all A(i)[j] = I then the post-measurement state will satisfy the predicate

(Z1 ∩A(1) ∩ · · · ∩A(m)) ⊎ (−Z1 ∩A(1) ∩ · · · ∩A(m)).

Normalize each branch of the union separately to get the normalized post-measurement
predicate.

4We refer the interested reader to the discussion following Proposition 3 in Aaronson and Gottesman [1]
for details on why this fact holds.

18

Observe that case (3) can occur only when an m < n–that is, the predicate is under-
determined. This will commonly be the case while dealing with the physical qubit pred-
icates for stabilizer-based error-correcting codes. Finally, by construction, the measured
qubit satisfies the predicate Z or −Z and is separable from the rest of the system.

Example 12. As an example of our normalization and measurement rules, consider
measuring the first qubit in the z-basis, a state satisfying the predicate X⊗X. According to
our rules above, we remove this term when considering the post-measurement predicate; that
is, we know nothing of the resulting predicate except the consequence of the measurement.
In particular, rule (1) above states our post-measurement predicate is of the form Z1 ⊎−Z1.
To validate this in the semantics, we note X⊗X(|ψ⟩) if and only if

|ψ⟩ = α |++⟩+ β |−−⟩ = 1√
2 |0⟩ ⊗ (α |+⟩+ β |−⟩) + 1√

2 |1⟩ ⊗ (α |+⟩ − β |−⟩).

Regardless of measuring 0 or 1, the resulting state in the other qubit is arbitrary. Hence
the postcondition is indeed of the form (Z⊗ I) ⊎ (−Z⊗ I) = Z1 ⊎ −Z1.

5.3 Example: Measuring a GHZ state
Continuing our analysis of the GHZ state from §4.3, the circuit GHZ has the postcondition

(X⊗X⊗X) ∩ (Z⊗ Z⊗ I) ∩ (I⊗ Z⊗ Z).

To compute the output of GHZ; MEAS 1, we enact the above program. Fortunately, our
intersection already has the requisite form, with the first term being the only one with an
X in the initial position. We remove the term (X ⊗X ⊗X) and replace the intersection
with

(Z1 ∩ (Z⊗ Z⊗ I) ∩ (I⊗ Z⊗ Z)) ⊎ (−Z1 ∩ (Z⊗ Z⊗ I) ∩ (I⊗ Z⊗ Z))

We normalize each branch of the union as per §3 to obtain

(Z1 ∩ Z2 ∩ (I⊗ Z⊗ Z)) ⊎ (−Z1 ∩ −Z2 ∩ (I⊗ Z⊗ Z)).

Finally, the last term can also be simplified to give (Z1∩Z2∩Z3)⊎ (−Z1∩−Z2∩−Z3).
□

6 Application: Error-correcting Codes
We can also use our logic system to analyze error-correcting codes. In this section, we
consider the 7-qubit Steane [29] code. Recall that the Steane code encodes a single qubit
into 7 qubits and has the ability to detect errors on 2 qubits and correct all single-qubit
errors. The stabilizers and logical operators for the Steane code are generated by:

g1 = IIIXXXX g2 = IXXIIXX X = XXXXXXX
g3 = XIXIXIX g4 = IIIZZZZ Z = ZZZZZZZ
g5 = IZZIIZZ g6 = ZIZIZIZ

We realize |0⟩ in this setup through the logical state |0L⟩ defined by projecting the all 0s
state using the stabilizer generators of the code:

|0L⟩ ∝
1
26 Π6

i=1(I + gi) |0000000⟩

19

By virtue of being the logical 0 state, it should also be stabilized by the logical-σZ equivalent
Z. In other words, |0L⟩ is uniquely stabilized by g1, . . . , g6 and Z. In our system, this means
that |0L⟩ : ZL where ZL is the 7-term intersection predicate

ZL := g1 ∩ . . . ∩ g6 ∩ Z
= I⊗ I⊗ I⊗X⊗X⊗X⊗X
∩ . . . ∩ Z⊗ I⊗ Z⊗ I⊗ Z⊗ I⊗ Z
∩ Z⊗ Z⊗ Z⊗ Z⊗ Z⊗ Z⊗ Z

(10)

By a similar argument, |+L⟩ : XL where XL = g1∩. . .∩g6∩X. All states in the Steane
code space are stabilized by g1, . . . , g6. Then, we can associate the following predicate to
the logical Steane code space as

St7 := g1 ∩ . . . ∩ g6 and ZL = St7 ∩ Z; XL = St7 ∩X.

Being consistent with the equation above, we can conclude that |+iL⟩ : YL where

YL := g1 ∩ . . . ∩ g6 ∩Y where Y = iXZ.

Further, we use YL = iXLZL as syntactic sugar to derive the action of any gate on YL.
In this scenario, we can manipulate the predicates at the logical level, i.e., {XL,YL,ZL}
as if they share the same algebraic relations as their corresponding Pauli counterparts,
{X,Y,Z}.

y

x1
x2
x3
x4
x5
x6

a

1 2 3 4 5

H
H
H

Figure 2: Encoding circuit for the Steane [[7, 1, 3]] code

Consider the Steane code unitary encoding circuit Enc−St given in Figure 2 where a
data qubit y is converted into a logical qubit a. By construction, it takes |a⟩⊗ |000000⟩ →
|aL⟩ for a ∈ {0, 1,+,−}. Consider a = 0 for instance. Then we can describe the action of
Enc−St in our system as follows:

1. start with the precondition Zy ∩ Zx1 ∩ . . . ∩ Zx6 ;

2. apply each gate from Figure 2 using the axioms for H and CNOT ;

3. normalize the output.

A straightforward computation (an exercise left to the reader) will show that we indeed
obtain norm(ZL) as the output. Extending this argument, we characterize Enc− St as:

{Zy ∩ Zx1 ∩ . . . ∩ Zx6} Enc−St {norm(ZL)}
{Xy ∩ Zx1 ∩ . . . ∩ Zx6} Enc−St {norm(XL)}

20

Another application of our system is verifying the transversality of a gate with respect to
a code. For instance, it is straightforward to verify that HL := H y; H x1; H x2; H x3; H x4;
H x5; H x6 is transversal for the Steane code i.e.,

{XL} HL {ZL} and {ZL} HL {XL} (11)

Clearly, {g1 ∩ g2 ∩ g3} HL {g4 ∩ g5 ∩ g6} and vice-versa. Hence, {St7} HL {St7}. Fur-
ther,

{
X
}
HL

{
Z
}

and vice-versa. Therefore, HL takes ZL = St7 ∩ Z to St7 ∩X = XL

and vice-versa.
In a similar vein, we can prove that the operation U = S y; S x1; S x2; S x3; S x4;

S x5; S x6 is not the logical-S gate SL. Firstly, the triple for the logical-S should satisfy

{ZL} SL {ZL} and {XL} SL {YL}

Now,
{

g4 ∩ g5 ∩ g6 ∩ Z
}
U
{

g4 ∩ g5 ∩ g6 ∩ Z
}

as the S acts only on Z or I. In the case
of {g1,g2,g3,X}, the Xs are converted to Ys such that the predicates are changed on
output. Clearly,

{
X
}
U
{
Y7} but Y7 = −iXZ = −Y. Let us take g1 ∩ g4 to see how

the remaining stabilizers would evolve:

{g1 ∩ g4} U {(I⊗ I⊗ I⊗Y⊗Y⊗Y⊗Y) ∩ g4}
{g1 ∩ g4} U {(I⊗ I⊗ I⊗Y⊗Y⊗Y⊗Y)g4 ∩ g4}

{g1 ∩ g4} U {g1 ∩ g4}

cons

{g1 ∩ g4} U {I⊗ I⊗ I⊗Y⊗Y⊗Y⊗Y) ∩ g4} ⇒
{I⊗ I⊗ I⊗Y⊗Y⊗Y⊗Y)g4 ∩ g4}⇝
{g1 ∩ g4}

Extending this reasoning to (g2 ∩ g5) and (g3 ∩ g6), {St7} U {St7}. Putting the
pieces together, {ZL} U {ZL} but U takes XL to St7 ∩ −Y = −YL. By contrast,
defining

SL := Z y; S y; Z x1; S x1 Z x2; S x2; Z x3; S x3; Z x4; S x4; Z x5; S x5; Z x6; S x6

gives us the desired behavior.
We would also like to show that the T -gate is not transversal for the Steane code.

However, with T not being a Clifford gate, we find that Pauli predicates are insufficient
to describe it fully. For this, we consider the additive extension to our logic system in
subsequent sections and demonstrate this in Example 16.

6.1 Logical Multi-qubit predicates
Extending the discussion on logical qubits and quantum error correcting codes to multi-
qubit logical states requires us to add some additional rules to our system.

Separable states Describing states where each qubit is separable will be the most
straightforward of these. A simple example is with the state |01⟩ : X1∩Z2. Correspondingly
the state |0L1L⟩ : (XL)1 ∩ (ZL)2 where 1, 2 represent the logical qubits. From the point of
the physical qubits 1, 2 denote the sets of physical qubits that encode each logical qubit.
For instance, for the 7-qubit Steane code, 1 := (y, x1, . . . , x6) and 2 := (y′, x′

1, . . . , x
′
6).

Formally, we get,

(XL)1 ∩ (ZL)2 = (g1 ∩ . . .g6 ∩X)1 ∩ (g1 ∩ . . .g6 ∩ Z)2

21

Entangled multi-qubit states To express the predicate for two logical qubits as, say,
XL ⊗L ZL, and effectively tracking their evolution requires more advanced notions such
as a logical tensor product ⊗L between logical predicates and further rules on how tensor
products behave with intersections. For the sake of this example, we consider a logical
tensor operation ⊗L that acts as follows:

• Consider two basic logical predicates AL,BL for A,B ∈ {X,Z}

• Order their intersection terms as AL = g1 ∩ . . .∩ g6 ∩A and BL = g1 ∩ . . .∩ g6 ∩B

• Define AL ⊗L BL:=(St7 ⊗ I7) ∩ (I7 ⊗ St7) ∩ (A⊗B).

Not that this definition is not arbitrary, but it can, in fact, be derived from existing rules
in our system along with the assumption that the tensor distributes across intersections
when the terms involved commute, i.e.,

{T} g {(A ∩B)⊗C}
{T} g {(A⊗ I) ∩ (B⊗ I) ∩ (I⊗C)}

∩-⊗-dist
(12)

Recalling that St7 = g1 ∩ . . . ∩ g6, we can fully expand the ⊗L expression as

AL ⊗L BL=(g1 ⊗ I7) ∩ . . . ∩ (g6 ⊗ I7) ∩ (I7 ⊗ g1) ∩ . . . ∩ (I7 ⊗ g6) ∩ (A⊗B)

Now, the question becomes: can we show the transversality of CNOT with respect to
the Steane code? We can begin by defining:

CNOTL 1 2 := CNOT y y′; CNOT x1 x′
1; CNOTx2 x′

2; CNOT x3 x′
3;

CNOT x4 x′
4; CNOT x5 x′

5; CNOT x6 x′
6;.

Using the behavior of CNOT from Table 2, we need to show that

{XL ⊗ IL} CNOTL {XL ⊗XL} {IL ⊗XL} CNOTL {IL ⊗XL}
{IL ⊗ ZL} CNOTL {ZL ⊗ ZL} {ZL ⊗ IL} CNOTL {ZL ⊗ IL}

(13)

Here, by IL, we mean any state that lies in the codespace of the Steane code, and so,

IL := g1 ∩ . . . ∩ g6.

It will be easier to derive the action of CNOTL by understanding its actions on each of
the stabilizers and logical operators for the Steane code as all logical predicates use these
as the building blocks. Applying CNOTL to each of the operators gate-wise, we get:

• For the X-terms, i.e., for A ∈ {g1,g2,g3,X}{
A⊗ I7

}
CNOTL {A⊗A} and

{
I7 ⊗A

}
CNOTL

{
I7 ⊗A

}
(14)

• For the Z-term, i.e., for A ∈ {g4,g5,g6,Z}{
A⊗ I7

}
CNOTL

{
A⊗ I7

}
and

{
I7 ⊗A

}
CNOTL {A⊗A} (15)

22

As the term (St7⊗ I7)∩ (I7⊗St7) appears in every predicate for entangled states, we
first derive the action of CNOTL on it.

{
(St7 ⊗ I7) ∩ (I7 ⊗ St7)

}
CNOTL

{ 6⋂
i=1

(gi ⊗ gi)
6⋂

i=4
(gi ⊗ I7)

3⋂
i=1

(I7 ⊗ gi)
}

{
(St7 ⊗ I7) ∩ (I7 ⊗ St7)

}
CNOTL

{ 6⋂
i=1

(gi ⊗ I7)
6⋂

i=1
(I7 ⊗ gi)

}
{

(St7 ⊗ I7) ∩ (I7 ⊗ St7)
}

CNOTL

{
(St7 ⊗ I7) ∩ (I7 ⊗ St7)

}
cons

(16)

Now, using eqs. (14) to (16), we can derive the action of CNOTL on the remaining
logical predicates. Taking XL ⊗ IL = (St7 ⊗ I7) ∩ (I7 ⊗ St7) ∩ (X⊗ I7) as an example,

{XL ⊗ IL} CNOTL

{
(St7 ⊗ I7) ∩ (I7 ⊗ St7) ∩ (X⊗X)

}
{XL ⊗ IL} CNOTL {XL ⊗XL}

cons

Similarly, for the other three cases, we can directly get

{ZL ⊗ IL} CNOTL {ZL ⊗ IL}
{IL ⊗XL} CNOTL {IL ⊗XL}
{IL ⊗ ZL} CNOTL {ZL ⊗ ZL}

thereby satisfying Equation (13) and confirming the transversality of CNOT for the Steane
code.

7 Additive Predicates
7.1 The Clifford + T set
Up to this point, we have focused on Hoare triples of Clifford operations, which are not
universal for quantum computation. The easiest path from the Clifford set to a universal
set is adding the T operator to our language. Appealing to Gottesman’s original Heisenberg
formalism TσzT

† = σz, and so we can use the triple {Z} T {Z}. Unfortunately,

TσxT
† = 1√

2

(
0 1−i

1+i 0

)
is not in the Pauli group and hence not expressible in our logic using Pauli predicates.

Yet, 1√
2

(
0 1−i

1+i 0

)
can be rewritten as the weighted sum of Pauli matrices 1√

2(σx+σy), so
if our judgments distribute over addition, we can expand it to deal with additive predicates
A + B. Indeed U(A + B)U † = UAU † + UBU †. To incorporate terms involving added
predicates, we extend our grammar to include words of the form G + G, where G is the
language of Pauli predicates. Throughout, we will use the shorthand A−B = A + (−B).
We extend our judgments with the rule

{A} U {C} {B} U {D}
{A + B} U {C + D}

add
(17)

Note that this will so frequently be combined with our scale rule (which can now see a
broader range of coefficients c) to deal with additive predicates that we will tend to apply
them together.

23

Example 13 (T on precondition Y). We prove the behavior of T on precondition Y
explicitly:

{X} T
{

1√
2(X + Y)

}
{Z} T {Z}

{Y} T
{

1√
2(Y−X)

} mul+scale

Example 14 (Composing T). We prove that T ;T provides the same triples as S. This is
trivially true on Z since both S and T take precondition Z to postcondition Z. We prove
the T ;T reproduces the correct postcondition on X explicitly:

{X} T
{

1√
2(X + Y)

}
add+scale

{X} T
{

1√
2(X + Y)

}
{Y} T

{
1√
2(Y−X)

}
{

1√
2(X + Y)

}
T
{

1√
2(1√

2(X + Y + Y−X))
}

{X} T ;T {Y}
seq

Example 15 (Typing T †). Finally, it is useful to know the triples of T †, which we’ll define
as Z;S;T . Again one trivially has {Z} T † {Z}, so we simply prove its behavior on X as
follows:

{X} Z {−X} {−X} S {−Y}
{X} Z;S {−Y}

seq {−Y} T
{

1√
2(X−Y)

}
{X} Z;S;T

{
1√
2(X−Y)

} seq

Example 16 (Steane code non-transversality of T). Now that we have the triple for T ,
the logical-T gate for the Steane code TL should satisfy

{ZL} TL {ZL} and {XL} TL { 1√
2(XL + YL)}

where we use the descriptions from §6 for ZL,XL and YL. However, we can easily show that
the operation U := T y; T x1; T x2; T x3; T x4; T x5; T x6 does not satisfy this behavior.
In fact, U acting on St7 changes the output as any stabilizer containing an X is converted
into a non-trivial additive predicate. Then, T applied to St7 becomes a predicate containing
states outside both the Steane code space as well as the larger stabilizer state space. For
instance

{g1} U {I⊗ I⊗ I⊗ 1√
2(X + Y)⊗ 1√

2(X + Y)⊗ 1√
2(X + Y)⊗ 1√

2(X + Y)},

which is clearly not a simple tensor product of Paulis as a stabilizer is expected to be.

Proposition 17. Let |ψ⟩ be an n-qubit state satisfying
(

1√
2(P0 + P1) ∩P2 · · · ∩Pn

)
with

P0, P1 anticommuting. Then |ψ⟩ can be prepared from |0 . . . 0⟩ with a Clifford plus one
T -gate circuit.
Proof. As P0, P1 are anticommuting, by Theorem 42 there exists a Clifford circuit C such
that {P0} C {−X⊗ I⊗ · · · I} and {P1} C {Y⊗ I⊗ · · · I}. Hence[(

1√
2(X + Y)⊗ I⊗(n−1)

)
∩P′

2 · · · ∩P′
n

]
(C |ψ⟩).

Note that each P ′
j (j = 2, . . . , n) must commute with 1√

2(X + Y) ⊗ I⊗(n−1) and hence
Pj = I ⊗ Qj or Pj = σz ⊗ Qj . In either case, apply a T †-gate to the first qubit gives
T †

1 : P′
j → P′

j . Consequently,[(
X⊗ I⊗(n−1)

)
∩P′

2 · · · ∩P′
n

]
(T †

1C |ψ⟩).

24

Now, we can apply Proposition 2 and obtain a Clifford C ′ such that C ′T †
1C |ψ⟩ satisfies

Z1 ∩ · · · ∩ Zn. Therefore (C ′T †
1C)† is our desired circuit.

Note that there is a converse of this result. One can always squander the single T -gate
by applying it directly to |0 . . . 0⟩. But presuming this is not the case, and we prepare a state
on which T acts nontrivially, then additional Clifford gates can only produce predicates of
the form 1√

2(P0 + P1) ∩P2 · · · ∩Pn with P0, P1 anticommuting.

7.2 Example: Hoare triple for Toffoli
Now that we have a judgment for T , we can use it to derive a valid Hoare triple for Toffoli
via the latter’s standard decomposition into T , H and CNOT gates:

TOFFOLI a b c :=
H c; CNOT b c; T† c; CNOT a c; T c; CNOT b c; T† c;
CNOT a c; T b; T c; H c; CNOT a b; T a; T† b; CNOT a b.

Showing that {Z1 ∩ Z2} TOFFOLI {Z1 ∩ Z2} proves remarkably straightforward:

{Z ⊗ I ⊗ I ∩ I ⊗ Z ⊗ I}
H c; {Z ⊗ I ⊗ I ∩ I ⊗ Z ⊗ I}

CNOT b c; T† c; {Z ⊗ I ⊗ I ∩ I ⊗ Z ⊗ I}
CNOT a c; T c; {Z ⊗ I ⊗ I ∩ I ⊗ Z ⊗ I}
CNOT b c; T†c; {Z ⊗ I ⊗ I ∩ I ⊗ Z ⊗ I}

CNOT a c; T b; T c; {Z ⊗ I ⊗ I ∩ I ⊗ Z ⊗ I}
H c; {Z ⊗ I ⊗ I ∩ I ⊗ Z ⊗ I}

CNOT a b; T a; T†b; {Z ⊗ I ⊗ I ∩ Z ⊗ Z ⊗ I}
CNOT a b. {Z ⊗ I ⊗ I ∩ I ⊗ Z ⊗ I}

Note that the trailing T and T †s are all applied to I or Z and therefore have no effect on
the predicates. (We combine them with the previous commands for conciseness.) Notice-
ably, the derivation that {X3} TOFFOLI {X3} also proves trivial (since H c immediately
converts the X to a Z), showing that a |+⟩ in the third position is not entangled by a
Toffoli gate. By contrast, Toffoli’s action on Z3 does get a bit messy5:

{I ⊗ I ⊗ Z}
H c; {I ⊗ I ⊗X}

CNOT b c; {I ⊗ I ⊗X}
T† c; {I ⊗ I ⊗X − I ⊗ I ⊗ Y }

CNOT a c; {I ⊗ I ⊗X − Z ⊗ I ⊗ Y }
T c; {I ⊗ I ⊗X + I ⊗ I ⊗ Y − Z ⊗ I ⊗ Y + Z ⊗ I ⊗X}

CNOT b c; {I ⊗ I ⊗X + I ⊗ Z ⊗ Y − Z ⊗ Z ⊗ Y + Z ⊗ I ⊗X}
T† c; {I ⊗ I ⊗X − I ⊗ I ⊗ Y + I ⊗ Z ⊗X + I ⊗ Z ⊗ Y −

Z ⊗ Z ⊗X − Z ⊗ Z ⊗ Y + Z ⊗ I ⊗X − Z ⊗ I ⊗ Y }
CNOT a c; T b; {I ⊗ I ⊗X − Z ⊗ I ⊗ Y + I ⊗ Z ⊗X + Z ⊗ Z ⊗ Y −

Z ⊗ Z ⊗X − I ⊗ Z ⊗ Y + Z ⊗ I ⊗X − I ⊗ I ⊗ Y }

5We leave off the coefficients for readability’s sake, but this derivation, while wholly mechanical, can be
difficult to follow to the end. The reader may wish to skip to the final steps of the deduction.

25

T c; {I ⊗ I ⊗X + I ⊗ I ⊗ Y − Z ⊗ I ⊗ Y + Z ⊗ I ⊗X +
I ⊗ Z ⊗X + I ⊗ Z ⊗ Y + Z ⊗ Z ⊗ Y − Z ⊗ Z ⊗X −
Z ⊗ Z ⊗X − Z ⊗ Z ⊗ Y − I ⊗ Z ⊗ Y + I ⊗ Z ⊗X +
Z ⊗ I ⊗X + Z ⊗ I ⊗ Y − I ⊗ I ⊗ Y + I ⊗ I ⊗X}

H c; {I ⊗ I ⊗ Z − I ⊗ I ⊗ Y + Z ⊗ I ⊗ Y + Z ⊗ I ⊗ Z +
I ⊗ Z ⊗ Z − I ⊗ Z ⊗ Y − Z ⊗ Z ⊗ Y − Z ⊗ Z ⊗ Z −
Z ⊗ Z ⊗ Z + Z ⊗ Z ⊗ Y + I ⊗ Z ⊗ Y + I ⊗ Z ⊗ Z+
Z ⊗ I ⊗ Z − Z ⊗ I ⊗ Y + I ⊗ I ⊗ Y + I ⊗ I ⊗ Z}

CNOT a b; {I ⊗ I ⊗ Z − I ⊗ I ⊗ Y + Z ⊗ I ⊗ Y + Z ⊗ I ⊗ Z +
Z ⊗ Z ⊗ Z − Z ⊗ Z ⊗ Y − I ⊗ Z ⊗ Y − I ⊗ Z ⊗ Z −
I ⊗ Z ⊗ Z + I ⊗ Z ⊗ Y + Z ⊗ Z ⊗ Y + Z ⊗ Z ⊗ Z+
Z ⊗ I ⊗ Z − Z ⊗ I ⊗ Y + I ⊗ I ⊗ Y + I ⊗ I ⊗ Z}

T a; T† b; {I ⊗ I ⊗ Z − I ⊗ I ⊗ Y + Z ⊗ I ⊗ Y + Z ⊗ I ⊗ Z +
Z ⊗ Z ⊗ Z − Z ⊗ Z ⊗ Y − I ⊗ Z ⊗ Y − I ⊗ Z ⊗ Z −
I ⊗ Z ⊗ Z + I ⊗ Z ⊗ Y + Z ⊗ Z ⊗ Y + Z ⊗ Z ⊗ Z +
Z ⊗ I ⊗ Z − Z ⊗ I ⊗ Y + I ⊗ I ⊗ Y + I ⊗ I ⊗ Z}

CNOT a b; {I ⊗ I ⊗ Z − I ⊗ I ⊗ Y + Z ⊗ I ⊗ Y + Z ⊗ I ⊗ Z+
I ⊗ Z ⊗ Z − I ⊗ Z ⊗ Y − Z ⊗ Z ⊗ Y − Z ⊗ Z ⊗ Z −
Z ⊗ Z ⊗ Z + Z ⊗ Z ⊗ Y + I ⊗ Z ⊗ Y + I ⊗ Z ⊗ Z +
Z ⊗ I ⊗ Z − Z ⊗ I ⊗ Y + I ⊗ I ⊗ Y + I ⊗ I ⊗ Z}

=⇒ {I ⊗ I ⊗ Z + Z ⊗ I ⊗ Z + I ⊗ Z ⊗ Z − Z ⊗ Z ⊗ Z −
Z ⊗ Z ⊗ Z + I ⊗ Z ⊗ Z + Z ⊗ I ⊗ Z + I ⊗ I ⊗ Z}

=⇒ {I ⊗ I ⊗ Z + Z ⊗ I ⊗ Z + I ⊗ Z ⊗ Z − Z ⊗ Z ⊗ Z}

Note that, despite the presence of seven T or T †-gates (and hence a potential of 128
summands appearing in the additive predicate), only four of them enlarged the term – all
T or T † gates applied to either of the first two qubits failed to change the predicates. The
Xs all left the picture once we applied the second Hadamard, and the Ys all canceled out,
leaving only Zs and Is. In fact, every summand has a Z in the last position, and the first
predicate leaves us no way to introduce a negative on the Z.

Hence, we can conclude that Toffoli satisfies the triple

{Z1 ∩ Z2 ∩ Z3} TOFFOLI {Z1 ∩ Z2 ∩ Z3}

7.3 General additive predicates
Clifford+T , as studied in the previous section, is universal in that all unitaries can be
approximated as a composition of such gates. However, one often wishes to do an exact
analysis or simply use a different universal gate set. Recall that we say |ψ⟩ satisfies a
predicate P if |ψ⟩ is a +1-eigenstate of the (multi-qubit) Pauli operator P . The critical
feature of Pauli operators is they are unitary, Hermitian, and (except in the case of the
identity) trace zero. Thus, unitary, Hermitian, and trace zero operators form a natural
basis to extend Pauli predicates. Note that the Pauli operators form a linear basis of the
vector space of all linear operators, and so for any unitary and Hermitian operator M , we
can write M =

∑
j cjPj for some (real) coefficients cj and Pauli operators Pj .

Definition 18. An additive predicate is an expression of the form M =
∑
j cjPj where

cj ∈ R and Pj are Pauli predicates, such that the operator M =
∑
j cjPj is unitary,

Hermitian, and trace zero. We say a state |ψ⟩ satisfies M, written M(|ψ⟩), if M |ψ⟩ = |ψ⟩.

26

Lemma 19. A one-qubit additive predicate has the form M = aX + bY + cZ with
a2 + b2 + c2 = 1.

Proof. Any one-qubit operator may written M = tI + aσx + bσy + cσz. As M is Hermitian
t, a, b, c ∈ R. But M is also unitary so

I = M2 = (t2 + a2 + b2 + c2)I + 2taσx + 2tbσy + 2tcσz.

Hence t = 0, and therefore M has trace zero and a2 + b2 + c2 = 1.

This lemma shows that 1-qubit additive predicates are particularly simple in that they
form a representation of the familiar Bloch sphere.

Proposition 4 on separability was stated at a level of generality that supports additive
predicates as follows.

Corollary 20. Let I(k−1) ⊗M⊗ I(n−k) be an additive predicate, and suppose |ψ⟩ satisfies
I(k−1) ⊗M⊗ I(n−k). Then the kth qubit of |ψ⟩ is unentangled from the rest of the system.

7.4 Logic of general unitary maps
The logic of Clifford operators carries over to general unitaries. With Cliffords, we claimed
that a complete description of an n-qubit operator could be deduced based on examining
the preconditions Xj and Zj as j = 1, . . . , n. In the case of 1-qubit unitaries consider the
triple {M} U {N}. Using |m⟩ and |n⟩ for one-qubit states that satisfy M(|M⟩) and N(|n⟩),
we have U |m⟩⟨m|U † = |n⟩⟨n|, which in turn implies UMU † = N . If M = aX + bY + cZ
then also M = aσx + bσy + cσz, and thus

N = U(aσx + bσy + cσz)U † = aUσxU
† + bUσyU

† + cUσzU
†.

That is, if we merely knew {X} U {Nx} and {Z} U {Nz} then we can deduce
{Y} U {Ny}, where

Ny = UσyU
† = iUσxU

†UσzU
† = iNxNz,

and so deduce N = aNx + bNy + cNz. In other words, knowing the postconditions of U
on preconditions X and Z suffices to prove the behavior of U on any additive predicate
precondition.

This extends to multi-qubit unitaries as expected. If we know how an n-qubit unitary
U behaves on preconditions Xj and Zj for any j = 1, . . . , n, then we can compute UPU †

for any n-qubit Pauli operator. From this we can then compute the postcondition of U
with any additive predicate M as precondition from UMU † =

∑
j cjUPjU

†. That is, each
unitary can be viewed as a matrix acting on Pauli operators, which Gosset et al. [12] refer
to the “channel” representation of U . In particular, we see that as a Clifford operators only
permutes Pauli operators (possibly with a sign change) its matrix only contains values −1,
0, or 1. From above, the channel representation of a T -gate has coefficients of the form
c

2s/2 for c ∈ {−1, 0, 1} and s ∈ {0, 1} (see also [12, Equation (6.2)]). With a straightforward
induction argument we prove the following result.

Theorem 21. Let U be a unitary circuit on n qubits composed of t number of T -gates and
an arbitrary number of Clifford gates, and suppose

{
Xj
}
U
{
Mj
}

and
{
Zj
}
U
{
Nj
}

for
additive predicates Mj and Nj, for each j = 1, . . . , n. Then every coefficient of Mj and
Nj is of the form c

2s/2 where c, s ∈ Z and s ≤ t.

27

Proof. Inductively, if t = 0, then U is a Clifford operator, and so each Mj and Nj is a
Pauli predicate, and hence as additive predicates, all their coefficients are in {−1, 0, 1} as
desired.

Suppose the statement is true for all unitary circuits containing at most t−1 number of
T -gates, and suppose U is a unitary circuit with t number of T -gates. Suppose U = C ◦U ′

with C a Clifford operator. We claim U ′ has the same assumptions and requirements as U :
clearly U ′ also contains t number of T -gates, and if

{
Xj
}
U ′

{
M′

j

}
and

{
Zj
}
U ′

{
N′

j

}
then we must have

{
M′

j

}
C
{
Mj
}

and
{

N′
j

}
C
{
Nj
}
; since C is a Clifford operator the

coefficients of Mj (respectively Nj) are the same as those of M′
j (respectively N′

j) up to
sign changes and reordering.

Therefore we may assume U = Tk ◦ U ′, where Tk represents a T -gate operating on the
k-th qubit. For notational convenience, let us assume k = 1 as the general case will follow
identically. As above assume

{
Xj
}
U ′

{
M′

j

}
and

{
Zj
}
U ′

{
N′

j

}
, and let us write

M ′
j = I ⊗

(∑
J

cJ,0PJ,0

)
+ σx ⊗

(∑
J

cJ,1PJ,1

)
+ σy ⊗

(∑
J

cJ,2PJ,2

)
+ σz ⊗

(∑
J

cJ,0PJ,0

)

where each PJ,l is a (n − 1)-qubit Pauli operator. Inductively each coefficient satisfies
2(t−1)/2cJ,l ∈ Z. Then T1 : M′

j →Mj and so

Mj = I ⊗
(∑

J

cJ,0PJ,0

)
+ 1√

2(σx + σy)⊗
(∑

J

cJ,1PJ,1

)

+ 1√
2(−σx + σy)⊗

(∑
J

cJ,2PJ,2

)
+ σz ⊗

(∑
J

cJ,0PJ,0

)

= I ⊗
(∑

J

cJ,0PJ,0

)
+ σx ⊗

(∑
J

cJ,1 − cJ,2√
2

PJ,1

)

+ σy ⊗
(∑

J

cJ,1 + cJ,2√
2

PJ,2

)
+ σz ⊗

(∑
J

cJ,0PJ,0

)
.

Finally, 2t/2 · cJ,1±cJ,2√
2 = 2(t−1)/2(cJ,1± cJ,2) ∈ Z. The same argument works for the Nj .

Note that certain unitaries, those that are Hermitian and have trace zero, also define
an additive predicate. This was clear for Pauli operators in the context of Pauli predicates:
X is a predicate as well as satisfying triples {X} σx {X} and {Z} σx {−Z}. It is
straightforward to check when a unitary is also Hermitian (up to a global phase) using
Hoare-style triples. A Hermitian unitary has U = U † = U−1 and so U2 = I. Thus U is
Hermitian if one can show {Xj} U {Xj} and {Zj} U {Zj} for all j = 1, . . . , n.

Example 22. The Hadamard gate satisfies {X} H {Z} and {Z} H {X}, and is also
Hermitian, and so defines an additive predicate H. It is straightforward to verify H =

1√
2(X + Z) by writing out H and 1√

2(σx + σz) in the computational basis and comparing
the resulting matrices. However, we can deduce this expression (again up to a global sign
change) from the triples above. From the lemma above we know H = aσx + bσy + cσz; just
using the Pauli relations

HσxH = (a2 − b2 − c2)σx + 2abσy + 2acσz = σz

HσzH = 2acσx + 2bcσy + (c2 − a2 − b2)σz = σx.

28

And so we obtain the quadratic system

0 = a2 − b2 − c2 = ab = bc

1 = 2ac = a2 + b2 + c2.

This is easy to solve by noting 1 = (a2 + b2 + c2) + (a2− b2− c2) = 2a2 and so a = c = ± 1√
2

and b = 0.

While a general unitary U is not Hermitian, we can construct additive predicates
associated with U by adding an ancillary qubit. This is based on the real and imaginary
parts of U as defined as follows.

Definition 23. Given any operator U define its real part as Re(U) = 1
2(U + U †) and

imaginary part as Im(U) = 1
2i(U − U

†).

Clearly, both Re(U) and Im(U) are Hermitian; however, neither is generally unitary.
Nonetheless, we claim they do satisfy Re(U)2 + Im(U)2 = I and Re(U) · Im(U) = Im(U) ·
Re(U), and so look like the blocks in a 2× 2 block unitary. Hence we could extend them
to a unitary with an additional qubit.

Lemma 24. Let U be unitary and Re(U), Im(U) be as above. Let P and Q be any
anticommuting Pauli operators (on any number of qubits). Then P ⊗ Re(U) +Q⊗ Im(U)
is unitary, Hermitian, and trace zero.

Proof. As P,Q,Re(U), Im(U) are all Hermitian so is P ⊗ Re(U) +Q⊗ Im(U). Similarly,
since P,Q anticommute, neither is the identity, and hence

tr(P ⊗ Re(U) +Q⊗ Im(U)) = tr(P) tr(Re(U)) + tr(Q) tr(Im(U)) = 0.

Finally, compute

(P ⊗ Re(U) +Q⊗ Im(U))2

= I ⊗ (Re(U)2 + Im(U)2) + PQ⊗ Re(U)Im(U) +QP ⊗ Im(U)Re(U).

So, to finish, we merely complete our claims from above:

Re(U)2 + Im(U)2 = 1
4(U2 + 2I + (U †)2)− 1

4(U2 − 2I + (U †)2) = I

and
Re(U)Im(U) = 1

4i(U
2 − (U †)2) = Im(U)Re(U).

For example if P = σx and Q = σz then

P ⊗ Re(U) +Q⊗ Im(U) =
(

Im(U) Re(U)
Re(U) −Im(U)

)
.

Definition 25. Let U be a n-qubit unitary, and P,Q ∈ {σx, σy, σz} be distinct. Then the
additive predicate of U relative to P,Q is the (n+ 1)-qubit additive predicate corresponding
to P ⊗ Re(U) + Q ⊗ Im(U). We denote this as P ⊗Re(U) + Q ⊗ Im(U) (despite that
neither Re(U) and Im(U) are predicates themselves).

29

7.5 Example: Triples satisfied by controlled unitaries
Consider the triples for the controlled-phase gate:

{I⊗X} control-σz {Z⊗X}, {X⊗ I} control-σz {X⊗ Z},
{I⊗ Z} control-σz {I⊗ Z}, {Z⊗ I} control-σz {Z⊗ I}.

Note {X} σz {−X} and {Z} σz : {Z}. One is naturally led to the question: could we have
deduced the appropriate postconditions of control-σz from those of σz? More generally,
can we deduce the triples of control-U from the triples of U? Unfortunately, the answer
must be no for a general unitary as this would imply “control-” is a functor of some sort,
which is not the case. Nonetheless, we can deduce the triples of control-U from those of U
and its additive predicate X⊗Re(U) + Y⊗ Im(U).

Consider control-U , and decompose our Hilbert space along the control bit H =
H0 ⊕ H1. Namely, with respect to this decomposition control-U is the matrix operator(

I 0
0 U

)
.

The component of our state where the control bit is |0⟩ lives in H0 where control-U
is trivial, but the component of the state where the control bit is |1⟩ lives in H1 where
control-U act as U . We use this representation to assert the judgments involving con-
trolled operations in the following lemma.

Lemma 26. Let U be any n-qubit unitary. Then the following triples are valid for the
controlled U :

1. {Z⊗ I} control-U {Z⊗ I}, and

2. {X⊗ I} control-U {X⊗Re(U) + Y⊗ Im(U)}.

If P is any n-qubit Pauli, and {P} U {V} then

(3) {I⊗P} control-U {I⊗ 1
2(P + V) + Z⊗ 1

2(P−V)}.

Proof. For (1), we simply note:(
I 0
0 U

)(
I 0
0 −I

)(
I 0
0 U †

)
=
(
I 0
0 −I

)
.

For (2), again, we compute(
I 0
0 U

)(
0 I
I 0

)(
I 0
0 U †

)
=
(

0 U †

U 0

)
.

But now, similar to above, we compute(
0 I
I 0

)(
0 U †

U 0

)
=
(
U 0
0 U †

)
=
(

1
2(I + σz)⊗ U + 1

2(I − σz)⊗ U †
)
.

Therefore (
0 U †

U 0

)
= (σx ⊗ I)

(
1
2(I + σz)⊗ U + 1

2(I − σz)⊗ U †
)

30

= (σx ⊗ I)
(
I ⊗ 1

2(U + U †) + σz ⊗ 1
2(U − U †)

)
= σx ⊗ Re(U) + σy ⊗ Im(U).

Finally, for (3), we compute(
I 0
0 U

)(
P 0
0 P

)(
I 0
0 U †

)
=
(
P 0
0 UPU †

)
=
(
P 0
0 V

)
.

In the computational basis 1
2(I + σz) =

(
1 0
0 0

)
and 1

2(I − σz) =
(

0 0
0 1

)
. Therefore

(
P 0
0 V

)
=
(
P 0
0 0

)
+
(

0 0
0 V

)
= 1

2(I + σz)⊗ P + 1
2(I − σz)⊗ V

= I ⊗ 1
2(P + V) + σz ⊗ 1

2(P − V).

Example 27. Recall {Z} S {Z} and {X} S {Y}. It is straightforward to verify that
Re(S) = 1

2(I + σz) and Im(S) = 1
2(I − σz). Thus, we have

{Z⊗ I} control-S {Z⊗ I}

{X⊗ I} control-S
{(

X⊗ 1
2(I + Z)

)
+
(
Y⊗ 1

2(I− Z)
)}

⇝
{(

1
2(X + Y)⊗ I

)
+
(

1
2(X−Y)⊗ Z

)}
{I⊗ Z} control-S {I⊗ Z}

{I⊗X} control-S
{(

I⊗ 1
2(X + Y)

)
+
(
Z⊗ 1

2(X−Y)
)}

.

Note that by Theorem 21, any unitary Clifford+T circuit that synthesizes control-S
requires at least 2 T -gates.

Theorem 28. Let U be a n-qubit Hermitian unitary with trace zero, and let U be its
associated additive predicate. Then for each k ≥ 0, we have controlk-U is also a Hermitian
unitary of trace zero, and its associated additive predicate is given by

CkU = I(k+n) − 1
2k (I− Z)k ⊗ (In −U).

Proof. As above, we write the operator relation(
I 0
0 U

)
= 1

2(I + σz)⊗ I + 1
2(I − σz)⊗ U

= I ⊗ 1
2(I + U) + σz ⊗ 1

2(I − U).

Now we can prove the theorem by induction. Clearly, the k = 0 case holds:

U = C0U⇝ In − (In −U).

Inductively suppose CkU = I(k+n) − 1
2k (I− Z)k ⊗ (In −U) then using the relation above

Ck+1U = I⊗ 1
2(I(k+n) + CkU) + Z⊗ 1

2(I(k+n) −CkU)

31

⇝ I⊗ 1
2(I(k+n) + I(k+n) − 1

2k (I− Z)k ⊗ (In −U))
+ Z⊗ 1

2(I(k+n) − I(k+n) + 1
2k (I− Z)k ⊗ (In −U))

⇝ I(k+1+n) − 1
2k+1 I⊗ (I− Z)k ⊗ (In −U)

+ 1
2k+1 Z⊗ (I− Z)k ⊗ (In −U)

⇝ I(k+1+n) − 1
2k+1 (I− Z)(k+1) ⊗ (In −U)).

Corollary 29. Ck−1Z = Ik − 1
2k−1 (I− Z)k.

As a simple example of the utility of the above formulation, we can easily derive a
complete set of triples for an arbitrarily multiply controlled Z operator as follows.

Theorem 30. We have

{Zj} controlk-σz {Zj}

{Xj} controlk-σz
{

Xj −
1

2k−1 (I− Z)j−1 ⊗X⊗ (I− Z)(k+1−j)
}
.

Proof. As controlk-σz is symmetric, it suffices to prove these statements for j = 1. For
the first, we already have

{Z⊗ Ik}control−(controlk−1-σz) {Z⊗ Ik}

from (1) of Lemma 26. Now from Lemma 26 part (2), and that controlk−1-σz is Hermitian,
we have

{X⊗ Ik} control−(controlk−1-σz) {X⊗Ck−1Z}.
Then the result follows from the previous corollary.

Corollary 31. Any unitary Clifford+T circuit that synthesizes controlk-σz contains at
least (2k − 2) T -gates.

Note that this corollary does not provide a sharp bound. For example, Gosset et al. [12]
provide an algorithm that explicitly computes the optimal T -count of the Toffoli gate to
be seven. However, our bound only provides the lower bound of two.

Lemma 32. For any unitary U we have

1. Re(controlk-U) = controlk-(Re(U)), and

2. Im(controlk-U) = 1
2k (I − σz)k ⊗ Im(U).

Proof. Note that

1
2

[(
I 0
0 U

)
+
(
I 0
0 U †

)]
=
(
I 0
0 1

2(U + U †)

)

and so Re(control-U) = control-(Re(U)). Then (1) follows from straightforward recur-
sion.

Similarly,

1
2i

[(
I 0
0 U

)
−
(
I 0
0 U †

)]
=
(

0 0
0 1

2i(U − U
†)

)
= 1

2(I − σz)⊗ Im(U).

Therefore (2) also follows from recursion.

32

Theorem 33. Let U be any n-qubit unitary, and k > 0. Then for j = 1, . . . , k, we have

{Zj} controlk-U {Zj}, and

{Xj} controlk-U
{

Xj −
1

2k−1 (I− Z)j−1 ⊗X⊗ (I− Z)(k−j) ⊗ In

+ 1
2k−1 (I− Z)j−1 ⊗X⊗ (I− Z)(k−j) ⊗Re(U)

+ 1
2k−1 (I− Z)j−1 ⊗Y⊗ (I− Z)(k−j) ⊗ Im(U)

}
.

Moreover, for any n-qubit Pauli P with {P} U {V} then

{Ik ⊗P} controlk-U
{

Ik ⊗P− 1
2k (I− Z)k ⊗ (P−V)

}
.

Proof. Clearly (1) follows immediately from Lemma 26 part (1).
For (2), we will assume j = 1 for clarity as the general case follows identically. From

Lemma 26 part (2) we have

{X⊗ I(k+n−1)}
control-(controlk−1-U)
{X⊗Re(controlk−1-U) + Y⊗ Im(controlk−1-U)}.

From part (1) of the previous lemma we have Re(controlk−1-U) = controlk−1-(Re(U)),
and so from Theorem 28

Re(controlk−1-U) = Ik+n−1 − 1
2k−1 (I − σz)(k−1)(In − Re(U)).

Part (2) of the that lemma simply gives Im(controlk−1-U) = 1
2k−1 (I − σz)(k−1) ⊗ Im(U).

Substituting these into the formula above gives the desired results.
We prove (3) inductively. For k = 1, Lemma 26 part (3) gives

{I⊗P} control-U {I⊗ 1
2(P + V) + Z⊗ 1

2(P−V)}
⇝ {1

2I⊗P + 1
2I⊗V + 1

2Z⊗P− 1
2Z⊗V}

⇝ {I⊗P− 1
2(I− Z)⊗ (P−V)}.

Now suppose the formula above holds for k − 1. Then from the typing statement we just
derived,

{I(k−1) ⊗ (I⊗P)}
controlk−1-(control-U){

I(k−1) ⊗ (I⊗P)− 1
2k−1 (I− Z)(k−1) ⊗

[
(I⊗P)−

(
(I⊗P)− 1

2(I− Z)⊗ (P−V)
)]}

⇝ {Ik ⊗P− 1
2k (I− Z)k ⊗ (P−V)}.

8 Measurement for additive predicates
One missing component of additive predicates is the derivation of normal forms. As a
consequence, a full formalism for measurement is incomplete. Nonetheless, we can go some
distance in characterizing post-measurement conditions using the projection semantics in-
troduced in the introduction.

33

8.1 Projection Semantics
Recall that our core interpretation of the predicate X is X(ψ) if and only if σxψ = ψ (that
is, |ψ⟩ = |+⟩ up to normalization). However, to derive postconditions of measurements in
general, we need an interpretation where we associate a predicate to a projection operator,
and a state satisfies the predicate precisely when it is in the image of the associated
projection operator. We could interpret this as a type of semantics, where our predicates
are evaluated to projections

JXK = |+⟩⟨+| , JYK = |i⟩⟨i| , and JZK = |0⟩⟨0| .

This clarifies the behavior of negation as, for instance,

J−ZK = I − JZK = I − |0⟩⟨0| = |0⟩⟨0|⊥ = |1⟩⟨1| .

Indeed, the negation of a predicate should behave like the orthogonal complement on the
lattice of projections.

For any (multi-qubit) Pauli operator P , the projection onto its +1-eigenspace is pre-
cisely Π+

P = 1
2(I + P). Similarly, the projection onto its −1-eigenspace is Π−

P = 1
2(I − P),

illustrating the relationship between operator negation in one interpretation versus orthog-
onal complement in the other.

8.2 Computing post-measurement states
When studying Pauli operators, we were able to exploit standard methods from the sta-
bilizer formalism for treating measurements in Pauli bases. However, these techniques no
longer apply for general unitary Hermitian operators, even those of trace zero. Hence we
need to revisit measurement from the first principles.

First, consider the problem of measuring a single qubit in the z-basis. Post measure-
ment, we know the state would satisfy the predicate Z⊎−Z where the factor in this union
depends on the measurement outcome. Although it is outside our logical formalism, we see
the probability of these outcomes directly in any preconditions of measurement the qubit
may satisfy.

Lemma 34. Let M = aX + bY + cZ be an additive predicate and M(|ψ⟩). Then in the
z-basis,

Prψ{meas = +1} = 1 + c

2 , and Prψ{meas = −1} = 1− c
2 .

Proof. We have M(|ψ⟩) when |ψ⟩ is the +1-eigenvector of the operator M = aσx+bσy+cσz.
As |ψ⟩⟨ψ| is the projector onto the +1-eigenspace of M , and I − |ψ⟩⟨ψ| is the projector
onto the −1-eigenspace, we must have

M = |ψ⟩⟨ψ| − (I − |ψ⟩⟨ψ|) = 2 |ψ⟩⟨ψ| − I.

Let ΠZ be the projector onto the +1-eigenspace of Z (that is ΠZ = |0⟩⟨0|). Born’s rule has

Prψ{meas = +1} = tr
(
ΠZ |ψ⟩⟨ψ|

)
= 1

2 tr
(
ΠZ(I +M)

)
= 1

2
(
1 + a tr

(
ΠZX

)
+ b tr

(
ΠZY

)
+ c tr

(
ΠZZ

))
= 1 + c

2 .

Similarly, Prψ{meas = −1} = 1−c
2 follows.

34

A similar fact holds in the multi-qubit case; however, it is significantly more challenging
to derive. Let us illustrate the key ideas on 2 qubits. Suppose (M(1) ∩M(2))(|ψ⟩) where
M(1),M(2) are 2-qubit additive predicates. Let M1 and M2 be the unitary Hermitian
operators associated with these. The assertion that |ψ⟩ is the joint +1-eigenvector of M1
and M2 implies M1M2 = M2M1. As above, we have |ψ⟩⟨ψ| as the projector onto this space,
and thus

|ψ⟩⟨ψ| = 1
4(I +M1)(I +M2) = 1

4(I +M1 +M2 +M1M2).

For convenience, let us write M0 = I and M3 = M1M2. Suppose we measure the first
qubit in the z-basis. As in the lemma above, the measurement projector is ΠZ ⊗ I and
Born’s rule reads

Prψ{meas = +1} = tr
(
(ΠZ ⊗ I) |ψ⟩⟨ψ|

)
= 1

4

3∑
j=0

tr
(
(ΠZ ⊗ I)Mj

)
.

To compute these traces, we write

Mj = I ⊗Nj0 +X ⊗Nj1 + Y ⊗Nj2 + Z ⊗Nj3,

and so

tr
(
(ΠZ ⊗ I)Mj

)
= tr

(
ΠZ ⊗Nj0

)
+ tr

(
ΠZX ⊗Nj1

)
+ tr

(
ΠZY ⊗Nj2

)
+ tr

(
ΠZZ ⊗Nj3

)
= tr(Nj0) + tr(Nj3).

Now, M0 = I, and for j > 0 we have Mj is trace zero. Thus we may write

N00 = I and N01 = N02 = N03 = 0,

and for j > 0:
Nj0 = x̃jX + ỹjY + z̃jZ
Nj3 = cjI + xjX + yjY + zjZ.

(18)

So,

Prψ{meas = +1} = 1
4(2 + tr(N13) + tr(N23) + tr(N33))

= 1 + c1 + c2 + c3
2

where we extract each cj as:

Mj = cjZ ⊗ I + other terms. (19)

For c1 and c2 this is by direct examination of M(1) and M(2). However c3 can only
be obtained by computing M1M2. A similar computation holds for the probability of
measuring −1, and so we have proven the following result.

Proposition 35. Suppose (M(1) ∩M(2))(|ψ⟩) where M(1),M(2) are 2-qubit additive predi-
cates, and suppose we measure the first qubit in the z-basis. As above write M1 and M2 for
the operators associated to these predicates and M0 = I and M3 = M1M2. For j = 0, 1, 2, 3
define

Mj = I ⊗Nj0 +X ⊗Nj1 + Y ⊗Nj2 + Z ⊗Nj3.

Then

Prψ{meas = +1} = p+ = 1 + c1 + c2 + c3
2

35

and

Prψ{meas = −1} = p− = 1− c1 − c2 − c3
2

where the cj are given in (19).

From this, we can bootstrap the full post-measurement predicates for a general 2-qubit
state as follows.

Theorem 36. On 2-qubit states, measurement in the z-basis satisfies

{M(1) ∩M(2)}meas1 {(Z1 ∩M+) ⊎ ((−Z)1 ∩M−)}

where

M+ = 1
2p+

3∑
j=1

((x̃j + xj)X + (ỹj + yj)Y + (z̃j + zj)Z) (20)

M− = 1
2p−

3∑
j=1

((x̃j − xj)X + (ỹj − yj)Y + (z̃j − zj)Z), (21)

where p± are given in the proposition above, and the coefficients of M± are in (18).

Proof. As above, write p+ = 1+c1+c2+c3
2 for seeing outcome +1, then the post-measurement

state given outcome +1 is

1
p+

(ΠZ ⊗ I) |ψ⟩ ⟨ψ| (ΠZ ⊗ I) = 1
4p+

3∑
j=0

(
(ΠZ ⊗ I)Mj(ΠZ ⊗ I)

)

= 1
4p+

3∑
j=0

(
ΠZ ⊗Nj0 + (ΠZXΠZ)⊗Nj1 + (ΠZYΠZ)⊗Nj2 + ΠZ ⊗Nj3

)

= ΠZ ⊗ 1
4p+

I +
3∑
j=1

(Nj0 +Nj3)

= ΠZ ⊗

1
2I + 1

4p+

3∑
j=1

((x̃j + xj)X + (ỹj + yj)Y + (z̃j + zj)Z)

 .
While we wrote this as a density operator, it is a pure state

1
p+

(ΠZ ⊗ I) |ψ⟩ ⟨ψ| (ΠZ ⊗ I) =
∣∣0, ψ′〉〈0, ψ′∣∣ .

As above |ψ′⟩⟨ψ′| = 1
2(I + M+) so by examination the post-measurement state satisfies

Z1 ∩ (M+)2.
For seeing outcome −1, which has probability p− = 1−c1−c2−c3

2 , the computation is
similar:

1
p−

((I −ΠZ)⊗ I) |ψ⟩ ⟨ψ| ((I −ΠZ)⊗ I) = (I −ΠZ)⊗ 1
4p−

I +
3∑
j=1

(Nj0 −Nj3)

= ΠZ ⊗

1
2I + 1

4p−

3∑
j=1

((x̃j − xj)X + (ỹj − yj)Y + (z̃j − zj)Z)

 .
So the post-measurement state satisfies (−Z)1 ∩ (M−)2

36

Example 37. Note that in the case that M(1) and M(2) are derived from Pauli operators,
the Proposition above recovers our measurement rules from earlier. Each additive predicate
only contains one Pauli term. From (19) we see that at most one cj can be nonzero, as
otherwise two of M1, M2, and M3 would equal Z ⊗ I contradicting independence of M(1)
and M(2). In the case where one cj = ±1 the measurement is deterministic (with outcome
equal to this cj) and the input state is separable. So suppose this is not the case, and the
measurement is uniformly random. One of M1, M2, and M3 must be of the form ±X ⊗ P
for some Pauli, as otherwise, one would be Z ⊗ I since they are independent and pairwise
commuting. Without loss of generality suppose M1 = s1X ⊗ P , where s1 ∈ {−1,+1}. As
M3 = M1M2 one of M2 or M3 has of the form

1. ±I ⊗Q where Q commutes with P , or

2. ±Z ⊗Q where Q anti-commutes with P .

Again without loss of generality, we can assume M2 takes one of these forms. Therefore
either:

1. M2 = s2I⊗Q and M3 = s1s2X⊗Q, and so in (18) the only nonvanishing coefficient
is one of x̃2, ỹ2, or z̃2 (according to Q) and we obtain the postcondition M+ = M− =
s2Q; or,

2. M2 = s2Z ⊗ Q and M3 = −s1s2Y ⊗ iPQ, and so in (18) the only nonvanishing
coefficient is one of xj, yj, or zk (again according to Q) and we have postcondtions
M+ = s2Q and M− = −s2Q.

Example 38. If we have a single T -gate, what other sort of gates can we synthesize using
it, Clifford gates, and measurement in the computational basis? We will focus only on
synthesizing another one-qubit gate using a single ancillary qubit that will be measured,
and so this example parallels gate injection, which we will study in the next section. By
Proposition 17, prior to measurement, we can assume our state |ψ⟩ satisfies a predicate of
the form

1√
2(P(0) + P(1)) ∩P(2)

where the 2-qubit Pauli operators P0 and P1 anticommute, and P2 commutes with both P0
and P1. Without loss of generality, we can assume the first qubit is measured in the z-basis.
Using the notation above M1 = 1√

2(P0 + P1), M2 = P2, and M3 = 1√
2(P0P2 + P1P2). As in

the previous example, we focus on cases involving Z⊗ I.

Case 1: P(2) = ±Z⊗ I In the notation above, c1 = c3 = 0 while c2 = ±1, and hence the
probability of measuring Z = +1 is 0 or 1 depending on the sign in P(2). Specializing (18)
to this case, we must have

M1 = 1√
2I⊗ (x̃X + ỹY + z̃Z) + 1√

2Z⊗ (xX + yY + zZ)

M3 = ±(1√
2I⊗ (xX + yY + zZ) + 1√

2Z⊗ (x̃X + ỹY + z̃Z))

Hence post measurement, our state satisfies

M′
± = ± 1√

2((x̃± x)X + (ỹ ± y)Y + (z̃ ± z)Z).

As P0 and P1 anticommute, precisely one of x, y, z is nonzero and precisely one of x̃, ỹ, z̃
is nonzero, and these cannot both be x, x̃ or y, ỹ or z, z̃. So by Proposition 17, this circuit
is equivalent to one that uses Clifford plus one T -gate (without measurement).

37

Case 2: P(0) = ±Z⊗ I Note this case also covers when P1, P0P2, or P1P2 is ±σz ⊗ I,
after relabeling terms as needed. As P0 and P1 anticommute we must have P1 = ±σx ⊗Q
or P1 = ±σy⊗Q for some Pauli operator Q (that may be I). Hence M1 does not contribute
to a post-measurement predicate. Yet, P2 must commute with both P0 and P1, and hence
P2 = I⊗Q′ where Q′ ∈ {σx, σy, σz}. But then M3 will not contribute to a post-measurement
predicate either, and hence M′

± = P(2) and the circuit is equivalent to a Clifford gate.

Case 3: None of P(0),P(1),P(2) is ±Z⊗ I This case is somewhat tedious, and so we
let the reader verify the details. Regardless, the measurement has probability 1

2 of obtaining
z = +1 or z = −1. In the subcase where P2 = σx ⊗Q or P2 = σy ⊗Q, then the result is
similar to Case 1 above in that between M1 and M3 precisely two of x, y, z, x̃, ỹ, z̃ contribute
to the output predicate, and so the circuit is equivalent to a Clifford with one T -gate circuit
(without measurement). In the subcase P2 = I ⊗Q, then the result is similar to Case 2
above in that the state is separable, and hence the post-measurement predicate is Q, and
the circuit is equivalent to a Clifford gate. Finally in the subcase P2 = σz ⊗Q, we must
have M1 = σx ⊗N1 + σy ⊗N2 (as otherwise either M1 or M3 would have a σz ⊗ I term);
then just as above neither M1 or M3 contribute a post-measurement predicate, which is Q,
and so the circuit is equivalent to a Clifford gate.

The n-qubit analysis follows in a similar way as with two qubits; however, we do not
have such a concrete result. Suppose (M(1) ∩ · · · ∩M(n))(|ψ⟩). Continuing our notation
from above, let Mj be the unitary Hermitian operator associated with M(j). Then

|ψ⟩⟨ψ| = 1
2n

n∏
j=1

(I +Mj) = 1
2n

∑
J⊆{1,··· ,n}

MJ

where the “multi-index” J selects a subset of {1, · · · , n} over which MJ =
∏
j∈JMj . Here

we adopt the convention M∅ = I similar to M0 = I in the 2-qubit case. Then Born’s rule
for measuring the first qubit reads

Pr{meas = +1} = 1
2n

∑
J⊆{1,...,n}

tr
(
(ΠZ ⊗ I(n−1))MJ

)
.

Again we write

MJ = I ⊗NJ0 +X ⊗NJ1 + Y ⊗NJ2 + Z ⊗NJ3

and just as in the 2-qubit case, have

tr
(
(ΠZ ⊗ I(n−1))MJ

)
= tr(NJ0 +NJ3).

Now, N∅0 = I and N∅K = 0. For J ̸= ∅, we expand

NJ0 =
∑
K ̸=0

qJKPK and NJ3 = cJI
(n−1) +

∑
K ̸=0

rJKPK ,

where here K ∈ {0, 1, 2, 3}n−1 and for K = (k1, . . . , kn−1) we write PK = Pk1 ⊗· · ·⊗Pkn−1 .
Then for measuring the first qubit to be state +1, we have

p+ = Pr{meas = +1} = 1
2

1 + 1
2n−1

∑
J ̸=∅

cJ

38

and the post-measurement state will be

1
p+

(ΠZ ⊗ I(n−1)) |ψ⟩ ⟨ψ| (ΠZ ⊗ I(n−1))

= ΠZ ⊗ 1
2n−1

I(n−1) + 1
2p+

∑
J ̸=∅

∑
K ̸=0

(qJK + rJK)PK

 .
Now, however, we face a challenge. The post-measurement state is a pure state |ψ′⟩ and

∣∣ψ′〉〈ψ′∣∣ = 1
2n−1

I(n−1) + 1
2p+

∑
J ̸=∅

∑
K ̸=0

(qJK + rJK)PK

 . (22)

But to find the predicates it satisfies, we need to find (n − 1)-qubit additive predicates
M′

1, . . . ,M′
n−1 such that the associated operators satisfy

n−1∏
j=1

(I(n−1) +M ′
j) = I(n−1) + 1

2p+

∑
J ̸=∅

∑
K ̸=0

(qJK + rJK)PK .

While this does not seem immediately tractable, we can prove a lemma that shows
that one feature of measurement from Pauli predicates carries over to general additive
predicates: if a term in the intersection involves only I and Z in the measured qubit, then
it becomes a term in the post-measurement predicate (possibly with a different sign).

Lemma 39. Suppose M = I ⊗N0 + Z ⊗N3. Then

• (ΠZ ⊗ I(n−1))M = (ΠZ ⊗ (N0 +N3))(ΠZ ⊗ I(n−1)), and

• ((I −ΠZ)⊗ I(n−1))M = ((I −ΠZ)⊗ (N0 −N3))((I −ΠZ)⊗ I(n−1)).

Proof. Direct computation.

To apply this lemma, without loss of generality suppose (M(1) ∩ · · · ∩M(n))(|ψ⟩) with
M1 = I ⊗ N1,0 + Z ⊗ N1,3, and suppose the first qubit is measured (in the z-basis) with
outcome +1. Then the post-measurement state is

1
p+

(ΠZ ⊗ I(n−1)) |ψ⟩ ⟨ψ| (ΠZ ⊗ I(n−1))

= 1
2np+

(ΠZ ⊗ I(n−1)) ·
n∏
j=1

(In +Mj) · (ΠZ ⊗ I(n−1))

= 1
2(ΠZ ⊗ (I(n−1) +N1,0 +N1,3)) · 1

2n−1p+
(ΠZ ⊗ I(n−1)) ·

n∏
j=2

(In +Mj) · (ΠZ ⊗ I(n−1)).

Hence the output state has M′
(1)(|0, ψ

′⟩) where M ′
1 = N1,0 + N1,3 (up to a normalization

term contained in p+). The second conclusion in the lemma handles the case for outcome
−1, where the post-measurement state has M′

(1)(|1, ψ
′⟩) where M ′

1 = N1,0 − N1,3 (again
up to normalization).

8.3 Application: Gate Injection
A standard approach to fault-tolerant universal quantum computation is through imple-
menting non-Clifford gates on codes through gate injection using associated “magic” states.
While we can be explicit about the structure of the unitary gate we wish to inject, let us

39

|m⟩
|ψ⟩ U2 U |ψ⟩

Figure 3: Gate injection circuit for U .

see what we can prove by simply appealing to Hoare-style judgments. For concreteness,
we focus on single-qubit unitaries and assume the two judgments

{X} U {M} and {Z} U {Z} . (23)

The additive predicate M cannot be arbitrary. These assumptions imply UσzU
† = σz

and UσxU
† = M . Since σx and σz anti-commute, so must M and σz and therefore

M = aσx + bσy where a2 + b2 = 1. We will parametrize a = cos θ and b = sin θ. Naturally
T fits this mold with θ = π

4 . It is straightforward to deduce

{Y} U {i · (cos θ ·X + sin θ ·Y)Z}⇝ {− sin θ ·X + cos θ ·Y},
and so we see U acts as a Bloch sphere rotation in the X/Y-plane by an angle θ.

We claim that we can synthesize U using the state |m⟩ that satisfies the predicate M
in the circuit of Figure 3. That is, we aim to show that this circuit C satisfies the triples

{M1 ∩ Z2} C {(Z1 ⊎ −Z1) ∩ Z2} and {M1 ∩X2} C {(Z1 ⊎ −Z1) ∩M2}

hence recovering (23) in the separable second factor.
Beginning with M1 ∩ Z2 = (M ⊗ I) ∩ (I ⊗ Z) we evaluate the effect of the circuit on

each term of the intersection:

{(cos θ ·X + sin θ ·Y)⊗ I}NOTC {cos θ ·X⊗ I + sin θ ·Y⊗ Z}
and {I⊗ Z}NOTC {I⊗ Z}.

Our post-measurement predicate is then

((Z1 ∩ I2) ⊎ (−Z1 ∩ I2)) ∩ ((Z1 ∩ Z2) ⊎ (−Z1 ∩ Z2))⇒ (Z1 ∩ Z2) ⊎ (−Z1 ∩ Z2),

as the second term on the left side can be obtained using an implication rule on the first.
Now turning to the case M1 ∩X2 = M⊗ I ∩ I⊗X we again evaluate the effect of the

circuit:

{(cos θ ·X + sin θ ·Y)⊗ I}NOTC{cos θ ·X⊗ I + sin θ ·Y⊗ Z}
and {I⊗X}NOTC {X⊗X}.

Now, however, our precondition to the measurement

(cos θ ·X⊗ I + sin θ ·Y⊗ Z) ∩ (X⊗X)

has too many terms with an X in the first factor. So we use the ∩-mul-r rule to multiply
the second term into the first, yielding

(cos θ · I⊗X + sin θ · Z⊗Y) ∩ (X⊗X).

Now we apply the discussions from the previous section to write the post-measurement
condition as

(Z1 ∩ (cos θ ·X + sin θ ·Y)2) ⊎ ((−Z)1 ∩ (cos θ ·X− sin θ ·Y)2).

So we see that upon measuring 0, the resulting state satisfies Z1∩M2 as desired. But upon
measuring 1 we have the resulting predicate (−Z)1∩ (cos(−θ)X+sin(−θ)Y)2, and so have
accomplished the rotation in the opposite direction. That is, we have implemented U †

and so doing a post-selected correction of U2 as in Figure 3 produces the output predicate
(−Z)1 ∩M2 as desired.

40

X Y Z
X X −Y −Z
Y −X Y −Z
Z −X −Y Z
H Z −Y X
S Y −X Z
T X + Y Y−X Z
T † X−Y X + Y Z

Table 1: Axiomatized and derived behavior of common one-qubit gates.

X⊗ I I⊗X Y⊗ I I⊗Y Z⊗ I I⊗ Z
CNOT X⊗X I⊗X Y⊗X Z⊗Y Z⊗ I Z⊗ Z
CZ X⊗ Z Z⊗X Y⊗ Z Z⊗Y Z⊗ I I⊗ Z

X⊗X X⊗Y X⊗Z Y⊗X Y⊗Y Y⊗Z Z⊗X Z⊗Y Z⊗Z
CNOT X⊗I Y⊗Z −Y⊗Y Y⊗I −X⊗Z X⊗Y Z⊗X I⊗Y I⊗Z
CZ Y⊗Y −Y⊗X X⊗I −X⊗Y X⊗X Y⊗I I⊗X I⊗Y Z⊗Z

Table 2: Behavior of common two-qubit gates over all Pauli pairs.

9 Complexity of program verification
We can now present the algorithm for inferring postconditions and validating triples on
quantum circuits. These are noticeably different procedures: validating triples ensures
that a program has a given user-specified type, while postcondition inference attempts to
derive a valid triple for a program. Given that our logic is rich enough to give infinitely
many predicated to any circuit (though many will be equivalent), we will not perform
full postcondition inference on a circuit. Instead, we can ask the user to specify the
input, i.e., a precondition, and derive the output or postcondition through our inference
rules. Alternatively, if the user has a specific postcondition in mind, we can do the same
inference procedure and normalize both the pre- and postconditions (applying weakening
rules as needed) and check that they are equivalent. Hence, in this section, we will focus
on postcondition inference given a variety of programs and preconditions.

Inference on tensor preconditions Given a Clifford circuit and a predicate P1⊗P2⊗
· · ·⊗Pn (consisting of no intersections or additive terms), we can derive the corresponding
postcondition on applying the circuit in O(m) time, where m is the number of gates. This
follows from the fact that we can update the postcondition on each gate application in
constant time. In practice, this only takes a single lookup since it proves convenient to add
a number of derived triples to the system (Tables 1 and 2). Note that we assume tensors
are implemented by arrays, saving us the time of iterating through an n qubit list.

Inference on intersection predicates Restricting to just Pauli predicates, we can
fully describe the semantics of a Clifford circuit (though we rarely will). Doing so requires
determining the postcondition for Ik−1 ⊗ Xk ⊗ In−k and Ik−1 ⊗ Zk ⊗ In−k, for every
1 ≤ k ≤ n where n is the number of qubits. There are precisely 2n terms in this intersection,
so the time to infer the fully descriptive output predicate is O(mn).

41

Inference on fully separable preconditions When we get to separable preconditions,
we have to start doing normalization (§3). The normalization procedure iterates over each
tensor in an intersection and then multiplies it by potentially all the remaining tensors.
Since there are at most 2n elements in the intersection and each tensor is of length n,
this winds up being an O(n3) operation. Once the normalization is done, applying the
separability rules is straightforward. This gives us a complexity of O(mn+ n3), which we
can simplify to O(mn) (our previous result) when m≫ n2.

Post-measurement inference on Pauli predicates Measurement is where some
complexity can start to appear, especially with it being a non-unitary operation. In general,
we want to use the principle of deferred measurement [22, §4.4] to push off measurements
until the end of the circuit, allowing us to perform normalization only once. A single-qubit
post-measurement predicate doubles in size when a random outcome is expected due to
the use of unions. Then, performing m measurements could potentially add a 2m factor
increase in the number of terms. This is in line with the fact that there could be 2m
possible outcomes to track.

In practice, however, it is more common for us to post-select on certain measurement
outcomes or perform subsequent operations conditioned on certain outcomes (e.g., error
correction). In such cases, it will be possible to simplify the expression or focus only on
a pre-determined set of postconditions to understand the measurement behavior. The
cost for computing the post-measurement predicate for a single Pauli measurement on an
n-qubit system with ℓ terms in the union is O(2ℓn3).

The Clifford+T set and exponential blowup Naturally, universal quantum com-
puting is the real test case for our logic. We know that our system is capable of fully
describing arbitrary quantum computations, so unless quantum computing is efficiently
simulable, we cannot efficiently validate the action of arbitrary quantum circuits. This is
clear in the case of Toffoli. As we saw in §7.2, despite having seven T gates, checking the
Toffoli circuit only involves additive predicates with at most 4 terms (in the worst case). So
in some sense, Toffoli only has an “effective” T -depth of 2 (which is essentially the content
of Theorem 21).

Nevertheless, in the worst case, the running time of our validation and inference pro-
cedures is O(2t), where t is the number of T -gates, illustrating that our system cannot be
efficiently applied to arbitrary circuits.

Post-measurement inference on additive predicates At this time, we refrain from
providing any asymptotic expressions for the complexity of measuring additive predicates
as we only consider very restricted cases of measuring single and 2-qubit systems. These
are performed in an ad-hoc way by manipulating the underlying matrix corresponding to
the given predicates. Hence, even generalizing the current process may not provide any
non-trivial insights into asymptotic complexities beyond taking O(2n) time for an n-qubit
system.

10 Related Work
A variety of Hoare logics for quantum programs already exist. These logics use a variety
of predicates, including quantum observables [35], subspaces [33], and projections [38],
going from most general to least. Notably, each assertion style is more expressive than
our stabilizer predicates. This is both an advantage and a limitation. The combination of

42

highly expressive predicates and a fully general consequence rule allows the user to prove
arbitrary properties of programs, but this requires significant manual effort. In particular,
in the rule for unitary application

{
U†PU

}
U {P}, some variant of which is present in

almost every Hoare logic, U †PU is almost never explicitly computed: Doing so would make
using the logic as complex as simulating the program. Instead, such expressions tend to
be left symbolic and are simplified by the liberal application of the consequence rule.

By contrast, the logic presented here is designed to be fully automated and efficient at
the cost of expressiveness. When a unitary gate is applied to a qubit, the corresponding
predicate changes, and this change is efficient, modulo the effect of non-Clifford gates. This
allows us to efficiently characterize properties like separability, provided that the T count is
low. However, we cannot prove the correctness of Grover’s algorithm or Harrow-Hassidim-
Lloyd algorithm, as in prior logics [35, 38].

Prior work on lightweight static analysis of quantum programs used the lens of abstract
interpretation. Abstract interpretation was developed by Cousot and Cousot [8] in order
to show useful properties of programs at low cost. Abstract interpretation necessarily
sacrifices fidelity (being able to perfectly describe a program) in favor of efficiency. Perdrix
[23] was the first to apply abstract interpretation to quantum programs (expanding on
earlier work [24] that used a type system), but his system was quite limited: It could
only precisely characterize a qubit as being in the z or x basis, and conservatively tracked
entanglement, meaning that it would err on the side of saying qubits were entangled if it
could not rule that out. Building on Perdix’s work, Prose and Zerrari [25] developed a
Hoare-like logic for conservatively tracking entanglement, applied to Selinger and Valiron’s
quantum lambda calculus [28].

More recently, Yu and Palsberg [36] developed an approach to quantum abstract in-
terpretation based on reduced density matrices, specifically 4 × 4 partial traces of the full
system. The expressiveness of such an approach is unclear and is mostly used to check that
qubits are in |0⟩ or |1⟩ states in practice. However, it does demonstrate remarkable perfor-
mance in assertion checking and admits the possibility of using larger, more informative,
reduced density matrices.

Honda [17] presented a more powerful system based, like ours, on the stabilizer formal-
ism. It represented states using stabilizer arrays, which can be translated to our logic but
are rather less useful than human-readable predicates. It dealt with non-stabilizer states
simply by treating them as black boxes (literally represented as ■), which could propagate
throughout the program. This could be useful in a few cases, such as where a non-stabilizer
state was quickly discarded, but generally meant the system could not meaningfully speak
about non-Clifford circuits.

Prior versions of this work [27, 31] presented the logic as a lightweight type system
for quantum programs. While there is a rich literature on semantic subtyping and set-
theoretic types [11, 4], in which types can convey rich information about a program, as our
logic became more complex, using types came to feel less natural. In particular, typing
derivations, which tend to be expressed in the form of trees, grew unwieldy, and it became
clear that we would need a notion of subtyping corresponding to Hoare logic’s consequence
rule. Our lightweight consequence rule (⇒) proved to be the right middle ground, allowing
us to simplify assertions without allowing arbitrary mathematical derivations. However,
the switch is not without cost: A type system allows us to fully characterize the behavior
of H with the type (X → Z) ∩ (Z → X), while in Hoare logic we had to introduce the
somewhat artificial judgment {{X ∥ Z}} H {{Z ∥ X}}, which is external to the core logic.
Note that U : (A → B) ∩ (A′ → B′) implies U : (A ∩ A′) → (B ∩ B′) via standard
subtyping rules. We could add a corresponding rule for {{A ∥ A′}} U {{B ∥ B′}}, but this

43

would add unnecessary complications to the logic.
Yuan et al. [37], introduce a type system for conservatively tracking entanglement, with

an interesting twist: Qubits can be cast to unentangled (“Pure”, in the paper’s terminology)
at the cost of a runtime check. This is a surprisingly lightweight and readable approach
to tracking entanglement. However, the runtime check is potentially costly (whether the
program is simulated or executed on a quantum computer) and it is not clear how this
type system could be extended to express additional properties.

Concurrently with this work, Wu et al. [34] developed QECV, a quantum Hoare logic
based on stabilizers for verifying error-correcting codes. This approach is largely comple-
mentary to our own (save for our comparatively small steps towards verifying stabilizer
codes) but suggests a variety of new possible directions. Their language, as well as their
logic, references predicates, allowing for measurement that branches on those predicates
and a custom measurement that reflects that. The language also includes loops, which we
do not address in this work. Adapting QECV’s language and logic to verifying attributes
like separability seems like a promising future direction for this work. It also seems likely
that we could build a verified tool that can check program properties using a generalization
of QECV that captures properties like separability.

Finally, there are two approaches to quantum program verification that are adjacent
to our own but worth addressing. Quantum assertions [18, 21, 20] allow one to embed
assertions inside programs that will check that a given property holds. While prior work
was limited to checking simple assertions, Li et al. [20] treats arbitrary projections as
assertions. However, these systems can fail at runtime (e.g., if the measured state has some
probability of being in the desired state) and also require us to check a program’s behavior
on a quantum device or sufficiently powerful simulator. At the other end of the spectrum
are sophisticated logical systems for quantum programs [35, 33] and powerful tools to
formally verify quantum program behavior [5, 16]. However, even with an assist from
automation, these tools tend to require substantial effort on the part of the programmer.
We refer the reader to two recent surveys [6, 19] for an in-depth analysis of the advantages
and disadvantages of these approaches.

11 Future work
There are still various ways to further enrich our program logic, providing many promising
avenues for us to explore.

Inference on Quantum Channels Other than measurement, all the operations whose
behavior we infer are unitary circuits. More general quantum operations are given by
completely positive trace-preserving maps, i.e., quantum channels. Extending our logic to
handle quantum channels could potentially allow us to perform inference on or validate
quantum cryptography and communication protocols. A starting point for this would be
to use additive predicates and unions to characterize partial traces and post-selection.

Applications for error-correcting codes Implementing a fault-tolerant universal set
of gates transversally will reduce the overall cost of error correction. However, as this
cannot be achieved using just one code, a common method used switches between two
sets of codes, each having a different set of transversal gates [2]. Extending our logic to
either infer the structure of or even validate the code-switching circuit given the predicates
describing two codes would prove to be fruitful. Similarly, validating the encoding and

44

decoding circuits for a code given its predicate could also be of value in verifying the
implementation of error-correcting codes.

Normalization for additive predicates Finding a canonical representation for additive
predicates is imperative to effectively validate additive postconditions. A big roadblock to
it is that, unlike with Pauli predicates, additive predicates (especially multi-qubit ones)
could have terms that neither commute nor anticommute. This makes it hard to find a
normalization procedure for them similar to that in §3. Additionally, this also limits our
ability to make multi-qubit separability judgments in the additive case.

General measurement for additive predicates Although we have outlined some
cases in §8 where we can infer the post-measurement states, this is limited to performing σz-
basis measurement on single and two-qubit systems. In order to fully exploit the power of
additive predicates, it is essential that we have a full characterization for post-measurement
states. An immediate consequence of this could be a deeper analysis of predicates for multi-
qubit magic states and applications associated with them.

A logic for quantum programs with classical control A key component of quan-
tum error correction and many quantum algorithms in practice (whether intermediate or
large scale) is that they are interspersed with classical processing. This includes the use
of classical control to decide which quantum operations to apply along with any pre- or
post-processing. To account for this, we would need to formally extend our logic to ex-
plicitly handle classical data types as well as other program elements such as conditional
statements, loops and recursions.

Acknowledgments
This material is based upon work supported by EPiQC, an NSF Expedition in Computing,
under Grant No. 1730449 and the Air Force Office of Scientific Research under Grant No.
FA95502110051.

References
[1] Scott Aaronson and Daniel Gottesman. “Improved Simulation of Stabilizer Circuits”.

In: Physical Review A 70.5 (2004), p. 052328. doi: 10.1103/physreva.70.052328. arXiv:
quant-ph/0406196.

[2] Jonas T. Anderson, Guillaume Duclos-Cianci, and David Poulin. “Fault-Tolerant
Conversion between the Steane and Reed-Muller Quantum Codes”. In: Phys. Rev. Lett.
113 (8 2014), p. 080501. doi: 10.1103/PhysRevLett.113.080501. arXiv: 1403.2734.

[3] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. “Silq: A
High-Level Quantum Language with Safe Uncomputation and Intuitive Semantics”.
In: Proc. PLDI ’20. ACM, 2020, pp. 286–300. doi: 10.1145/3385412.3386007. url:
https://files.sri.inf.ethz.ch/website/papers/pldi20-silq.pdf.

[4] Giuseppe Castagna. Programming with Union, Intersection, and Negation Types.
2022. arXiv: 2111.03354.

45

https://doi.org/10.1103/physreva.70.052328
https://arxiv.org/abs/quant-ph/0406196
https://doi.org/10.1103/PhysRevLett.113.080501
https://arxiv.org/abs/1403.2734
https://doi.org/10.1145/3385412.3386007
https://files.sri.inf.ethz.ch/website/papers/pldi20-silq.pdf
https://arxiv.org/abs/2111.03354

[5] Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît
Valiron. “An Automated Deductive Verification Framework for Circuit-Building
Quantum Programs”. In: Programming Languages and Systems, ESOP 2021. Ed. by
Nobuko Yoshida. Vol. 12648. Lecture Notes in Computer Science. Springer Interna-
tional Publishing, 2021, pp. 148–177. doi: 10.1007/978-3-030-72019-3_6.

[6] Christophe Chareton, Sébastien Bardin, Dongho Lee, Benoît Valiron, Renaud Vilmart,
and Zhaowei Xu. Formal Methods for Quantum Programs: A Survey. To appear
as Chapter “Formal methods for Quantum Algorithms” in “Handbook of Formal
Analysis and Verification in Cryptography”, CRC. 2022. arXiv: 2109.06493.

[7] Richard Cleve and Daniel Gottesman. “Efficient Computations of Encodings for Quan-
tum Error Correction”. In: Phys. Rev. A 56 (1 1997), pp. 76–82. doi: 10.1103/Phys-
RevA.56.76. arXiv: quant-ph/9607030.

[8] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints”. In:
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977. ACM, 1977, pp. 238–
252. doi: 10.1145/512950.512973. url: https://courses.cs.washington.edu/
courses/cse503/10wi/readings/p238-cousot.pdf.

[9] David Deutsch. “Quantum theory, the Church–Turing principle and the universal
quantum computer”. In: Proceedings of the Royal Society of London. A. Mathematical
and Physical Sciences 400.1818 (1985), pp. 97–117. doi: 10.1098/rspa.1985.0070.

[10] David Deutsch and Richard Jozsa. “Rapid solution of problems by quantum compu-
tation”. In: Proceedings of the Royal Society of London. Series A: Mathematical and
Physical Sciences 439.1907 (1992), pp. 553–558. doi: 10.1098/rspa.1992.0167.

[11] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. “Semantic Subtyping:
Dealing Set-Theoretically with Function, Union, Intersection, and Negation Types”.
In: J. ACM 55.4 (2008). doi: 10.1145/1391289.1391293.

[12] David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. “An Algorithm
for the T-Count”. In: Quantum Info. Comput. 14.15–16 (2014), pp. 1261–1276. doi:
10.26421/QIC14.15-16-1. arXiv: 1308.4134.

[13] Daniel Gottesman. “Class of quantum error-correcting codes saturating the quantum
Hamming bound”. In: Phys. Rev. A 54.3 (1996), pp. 1862–1868. doi: 10.1103/phys-
reva.54.1862. arXiv: quant-ph/9604038.

[14] Daniel Gottesman. “The Heisenberg Representation of Quantum Computers”. In:
Group22: Proceedings of the XXII International Colloquium on Group Theoretical
Methods in Physics. LA-UR-98-2848. International Press, 1998, pp. 32–43. arXiv:
quant-ph/9807006.

[15] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît
Valiron. “Quipper: A Scalable Quantum Programming Language”. In: Proc. PLDI
’13. ACM, 2013, pp. 333–342. doi: 10.1145/2491956.2462177. arXiv: 1304.3390.

[16] Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, and Michael Hicks. “Prov-
ing Quantum Programs Correct”. In: 12th International Conference on Interactive
Theorem Proving (ITP 2021). Vol. 193. Leibniz International Proceedings in Infor-
matics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 21. doi:
10.4230/LIPIcs.ITP.2021.21. code: https://github.com/inQWIRE/SQIR.

46

https://doi.org/10.1007/978-3-030-72019-3_6
https://arxiv.org/abs/2109.06493
https://doi.org/10.1103/PhysRevA.56.76
https://doi.org/10.1103/PhysRevA.56.76
https://arxiv.org/abs/quant-ph/9607030
https://doi.org/10.1145/512950.512973
https://courses.cs.washington.edu/courses/cse503/10wi/readings/p238-cousot.pdf
https://courses.cs.washington.edu/courses/cse503/10wi/readings/p238-cousot.pdf
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.26421/QIC14.15-16-1
https://arxiv.org/abs/1308.4134
https://doi.org/10.1103/physreva.54.1862
https://doi.org/10.1103/physreva.54.1862
https://arxiv.org/abs/quant-ph/9604038
https://arxiv.org/abs/quant-ph/9807006
https://doi.org/10.1145/2491956.2462177
https://arxiv.org/abs/1304.3390
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://github.com/inQWIRE/SQIR

[17] Kentaro Honda. “Analysis of Quantum Entanglement in Quantum Programs using
Stabilizer Formalism”. In: Proc. QPL ’15. Vol. 195. Open Publishing Association,
2015, pp. 262–272. doi: 10.4204/EPTCS.195.19.

[18] Yipeng Huang and Margaret Martonosi. “Statistical Assertions for Validating Patterns
and Finding Bugs in Quantum Programs”. In: Proceedings of the 46th International
Symposium on Computer Architecture. ISCA ’19. ACM, 2019, pp. 541–553. doi:
10.1145/3307650.3322213.

[19] Marco Lewis, Sadegh Soudjani, and Paolo Zuliani. Formal Verification of Quantum
Programs: Theory, Tools and Challenges. 2021. arXiv: 2110.01320.

[20] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie.
“Projection-Based Runtime Assertions for Testing and Debugging Quantum Pro-
grams”. In: Proc. ACM Program. Lang. 4.OOPSLA, 150 (2020). doi: 10.1145/3428218.

[21] Ji Liu, Gregory T. Byrd, and Huiyang Zhou. “Quantum Circuits for Dynamic Runtime
Assertions in Quantum Computation”. In: Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS ’20. ACM, 2020, pp. 1017–1030. doi: 10.1145/3373376.3378488.

[22] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010. doi:
10.1017/CBO9780511976667.

[23] Simon Perdrix. “Quantum Entanglement Analysis Based on Abstract Interpretation”.
In: Static Analysis. Springer, 2008, pp. 270–282. doi: 10.1007/978-3-540-69166-2_18.
arXiv: 0801.4230.

[24] Simon Perdrix. “Quantum Patterns and Types for Entanglement and Separability”.
In: Electron. Notes Theor. Comput. Sci. 170 (2007). Proc. QPL ’05, pp. 125–138.
doi: 10.1016/j.entcs.2006.12.015.

[25] Frédéric Prost and Chaouki Zerrari. “Reasoning about entanglement and separability
in quantum higher-order functions”. In: International Conference on Unconventional
Computation. Springer. 2009, pp. 219–235. doi: 10.1007/978-3-642-03745-0_25.

[26] Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve Zdancewic. “ReQWIRE:
Reasoning about Reversible Quantum Circuits”. In: Proc. QPL ’18. 2018, pp. 299–312.
doi: 10.4204/EPTCS.287.17.

[27] Robert Rand, Aarthi Sundaram, Kartik Singhal, and Brad Lackey. “Gottesman
Types for Quantum Programs”. In: Proceedings of the 17th International Conference
on Quantum Physics and Logic (QPL), Paris, France, June 2–6, 2020. Vol. 340.
Electronic Proceedings in Theoretical Computer Science. Waterloo, NSW, Australia:
Open Publishing Association, 2021, pp. 279–290. doi: 10.4204/EPTCS.340.14.

[28] Peter Selinger and Benoît Valiron. “A lambda calculus for quantum computation
with classical control”. In: Mathematical Structures in Computer Science 16.3 (2006),
pp. 527–552. doi: 10.1017/S0960129506005238.

[29] Andrew Steane. “Multiple-particle interference and quantum error correction”. In:
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences 452.1954 (1996), pp. 2551–2577. doi: 10.1098/rspa.1996.0136.

[30] Andrew M. Steane. “Active Stabilization, Quantum Computation, and Quantum
State Synthesis”. In: Phys. Rev. Lett. 78 (11 1997), pp. 2252–2255. doi: 10.1103/Phys-
RevLett.78.2252. arXiv: quant-ph/9611027.

47

https://doi.org/10.4204/EPTCS.195.19
https://doi.org/10.1145/3307650.3322213
https://arxiv.org/abs/2110.01320
https://doi.org/10.1145/3428218
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/978-3-540-69166-2_18
https://arxiv.org/abs/0801.4230
https://doi.org/10.1016/j.entcs.2006.12.015
https://doi.org/10.1007/978-3-642-03745-0_25
https://doi.org/10.4204/EPTCS.287.17
https://doi.org/10.4204/EPTCS.340.14
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1103/PhysRevLett.78.2252
https://doi.org/10.1103/PhysRevLett.78.2252
https://arxiv.org/abs/quant-ph/9611027

[31] Aarthi Sundaram, Robert Rand, Kartik Singhal, and Brad Lackey. A Rich Type
System for Quantum Programs. 2021. arXiv: 2101.08939v3.

[32] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. “Q#: Enabling Scalable Quantum Computing and Development with
a High-level DSL”. In: Proc. Real World Domain Specific Languages Workshop
(RWDSL) 2018. ACM, 2018, 7:1–7:10. doi: 10.1145/3183895.3183901. arXiv: 1803.
00652.

[33] Dominique Unruh. “Quantum Hoare Logic with Ghost Variables”. In: Proceedings of
the 34th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS ’19.
IEEE Computer Society, 2019, pp. 1–13. doi: 10.1109/LICS.2019.8785779. arXiv:
1902.00325.

[34] Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yuan Xie, and Yufei
Ding. QECV: Quantum Error Correction Verification. 2021. arXiv: 2111.13728.

[35] Mingsheng Ying. “Floyd–Hoare Logic for Quantum Programs”. In: ACM Trans.
Program. Lang. Syst. 33.6, 19 (2012). doi: 10.1145/2049706.2049708.

[36] Nengkun Yu and Jens Palsberg. “Quantum Abstract Interpretation”. In: Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. PLDI ’21. ACM, 2021, pp. 542–558. doi:
10.1145/3453483.3454061. url: http://web.cs.ucla.edu/~palsberg/paper/
pldi21-quantum.pdf.

[37] Charles Yuan, Christopher McNally, and Michael Carbin. “Twist: Sound Reasoning
for Purity and Entanglement in Quantum Programs”. In: Proc. ACM Program.
Lang. 6.POPL, 30 (2022). doi: 10.1145/3498691. arXiv: 2205.02287. code: https:
//github.com/psg-mit/twist-popl22.

[38] Li Zhou, Nengkun Yu, and Mingsheng Ying. “An Applied Quantum Hoare Logic”.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’19. ACM, 2019, pp. 1149–1162. doi:
10.1145/3314221.3314584. url: https://opus.lib.uts.edu.au/bitstream/
10453/140615/2/3314221.3314584.pdf.

48

https://arxiv.org/abs/2101.08939v3
https://doi.org/10.1145/3183895.3183901
https://arxiv.org/abs/1803.00652
https://arxiv.org/abs/1803.00652
https://doi.org/10.1109/LICS.2019.8785779
https://arxiv.org/abs/1902.00325
https://arxiv.org/abs/2111.13728
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/3453483.3454061
http://web.cs.ucla.edu/~palsberg/paper/pldi21-quantum.pdf
http://web.cs.ucla.edu/~palsberg/paper/pldi21-quantum.pdf
https://doi.org/10.1145/3498691
https://arxiv.org/abs/2205.02287
https://github.com/psg-mit/twist-popl22
https://github.com/psg-mit/twist-popl22
https://doi.org/10.1145/3314221.3314584
https://opus.lib.uts.edu.au/bitstream/10453/140615/2/3314221.3314584.pdf
https://opus.lib.uts.edu.au/bitstream/10453/140615/2/3314221.3314584.pdf

A Full Grammar and Rules
1. Predicates:

G := I | X | Y | Z
T := G | cT | T⊗T | T + T
P := T | P ∩P | P ⊎P | PS

2. Core Rules:
{X} H {Z} {X⊗ I} CNOT {X⊗X}

{Z} H {X} {I⊗X} CNOT {I⊗X}

{X} S {Y} {Z⊗ I} CNOT {Z⊗ I}

{Z} S {Z} {I⊗ Z} CNOT {Z⊗ Z}

{Z} T {Z} {X} T
{

1√
2 (X + Y)

}
3. Tensor Rules:

T[i] = A {A} U {B}
{T} U i {T[i 7→ B]}

⊗1
T[i] = A T[j] = B {A⊗B} U {C⊗D}

{T} U i j {T[i 7→ C; j 7→ D]}
⊗2

4. Arithmetic Rules:

{A} g {A′} {B} g {B′}
{AB} g {A′B′}

mul
{A} g {A′}
{cA} g {cA′}

scale

5. Sequence Rule:

{A} g1 {B} {B} g2 {C}
{A} g1; g2 {C}

seq

6. Consequence Rule:

A′ ⇒ A {A} g {B} B⇒ B′

{A′} g {B′}
cons

7. Intersection and Disjoint Union Rules:

{A} g {A′} {B} g {B′}
{A ∩B} g {A′ ∩B′}

∩
{A} g {A′} {B} g {B′}
{A ⊎B} g {A′ ⊎B′}

⊎

8. Addition Rules:

{A} g {C} {B} g {D}
{A + B} g {C + D}

add
{A} U {B + C} T[i] = A
{T} U i {T[i 7→ B] + T[i 7→ C]}

⊗-add

Figure 4: The basic predicates, Hoare triples, and deductive rules for our stabilizer logic. The grammar
allows us to describe ill-formed predicates, such as X ∩ (I⊗ Z), but these are never satisfied.

49

1. Simplification rules:

GG⇝ I IG⇝ G GI⇝ G

ZX⇝ iY XY⇝ iZ YZ⇝ iX

XZ⇝ −iY YX⇝ −iZ ZY⇝ −iX

cA⊗B⇝ c(A⊗B) A⊗ cB⇝ c(A⊗B)

2. Implication rules:

A ∩B⇒ A
A ∩B⇒ B ∩A
A ∩ (B ∩C)⇔ (A ∩B) ∩C
A⇒ A ⊎B
A ⊎B⇒ B ⊎A
A ⊎ (B ⊎C)⇔ (A ⊎B) ⊎C
A ∩B⇔ A ∩AB (for Pauli Predicates A, B)
A + B⇒ B + A
(A + B) + C⇔ A + (B + C)
A + 0B⇒ A

3. Single-qubit Separability Rules:

Ik−1 ⊗B⊗ In−k ⇔ Bk

Bk ∩T⇔ Bk ∩T[n]\{k} where T[k] ∈ {B, I}

4. Multi-qubit separability rules for Pauli predicates when S = {j1, . . . , jk} ⊂ [n]:

B ∩T(1) ∩ . . . ∩T(k) ⇔ BS ∩
(
C(1) ∩ . . . ∩C(k)

)
S
,

where ∀j∈[k] T(j)[S] = C(j)∀j∈[k] T(j)[S] = In−kB[S] = Ik

Figure 5: Simplification and implication rules for our predicates. These cover our applications for
normalization and separability judgments. Let [n] = {1, . . . , n} and S ⊂ [n]. The conditions that
C(1), . . . ,C(k) need to satisfy to achieve multi-qubit separability are described in §4.2.

50

B Transitivity of Clifford groups
Recall that a group G acting on a set Ω is transitive if for any x, y ∈ Ω there exists a g ∈ G
with g · x = y. Since Clifford operators act on Pauli operators by conjugation, the Clifford
group can never be transitive as C · I = CIC† = I . However, for nontrivial Paulis, it is.

Proposition 40. Let P,Q ∈ Pn\{±I}. Then there exists a C ∈ Cℓn such that CPC† = Q.

More generally, a group is m-transitive if given tuples (x1, . . . , xm), (y1, . . . , ym) ∈ Ωm

with each xi ̸= xj and yi ̸= yj , then there exists a g ∈ G with g · xi = yi for i = 1, . . . ,m.
Again, since the Clifford group acts by conjugation C ·(−P) = −CPC† = −C ·P and so the
Clifford group cannot be even 2-transitive. However, we modify the definition to require
our Pauli elements to be distinct up to sign; then, we do obtain a higher transitivity result
in the one-qubit, which follows from simply counting the number of one-qubit Clifford
operators.

Lemma 41. Given P1, P2, Q1, Q2 ∈ P1 \ {±I} with P1 ̸= ±P2 and Q1 ̸= ±Q2, then there
exists a C ∈ Cℓ1 with CP1C

† = Q1 and CP2C
† = Q2.

Note that from the conditions in the lemma above, we must have P1 and P2 (and
respectively Q1 and Q2) anticommute. But for higher qubit Paulis, this is not the case:
even if P1 ̸= ±P2 we could have P1 and P2 commute. Since conjugation preserves com-
mutativity, again, the Clifford group cannot be 2-transitive. However, it is on pairs of
commuting/anticommuting Paulis.

Theorem 42. Given P1, P2, Q1, Q2 ∈ Pn \ {±I} with P1 ̸= ±P2 and Q1 ̸= ±Q2 and either
both P1, P2 and Q1, Q2 commute or both anticommute. Then then there exists a C ∈ Cℓn
with CP1C

† = Q1 and CP2C
† = Q2.

The proof of this theorem follows from the 2-qubit case (much like building a general
Clifford operator out of CNOT and one-qubit Cliffords). For two commuting 2-qubit
Cliffords P,Q, using the lemma above (and CNOT if necessary) one can easily produce a
C with CPC† = σy ⊗ σy and CQC† = σz ⊗ σz. Similarly, for two anticommuting 2-qubit
Cliffords P,Q, one gets a C with CPC† = I ⊗ σy and CQC† = I ⊗ σz. Then the theorem
follows from chaining each of P1, Q1 and P2, Q2 through the appropriate normal form.

51

	1 Introduction
	2 Our Hoare-style Logic and its Semantics
	2.1 A Simple Quantum Language
	2.2 Atomic Predicates
	2.3 Basic Hoare Triples and Sequencing
	2.4 Predicates over multi-qubit systems
	2.5 Intersections and Consequence Rules
	2.6 Fully Descriptive Predicates
	2.7 Example: Deutsch's Algorithm

	3 Normal Forms
	4 Separability
	4.1 Single qubit separability
	4.2 Multi-qubit separability
	4.3 Application: GHZ state, Entanglement Creation and Disentanglement

	5 Measurement
	5.1 Union predicates
	5.2 Predicates for post-measurement states
	5.3 Example: Measuring a GHZ state

	6 Application: Error-correcting Codes
	6.1 Logical Multi-qubit predicates

	7 Additive Predicates
	7.1 The Clifford + T set
	7.2 Example: Hoare triple for Toffoli
	7.3 General additive predicates
	7.4 Logic of general unitary maps
	7.5 Example: Triples satisfied by controlled unitaries

	8 Measurement for additive predicates
	8.1 Projection Semantics
	8.2 Computing post-measurement states
	8.3 Application: Gate Injection

	9 Complexity of program verification
	10 Related Work
	11 Future work
	References
	A Full Grammar and Rules
	B Transitivity of Clifford groups

